Dental caries vaccine: are we there yet?

M Patel
Author Information
  1. M Patel: Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. ORCID

Abstract

Dental caries, caused by Streptococcus mutans, is a common infection. Caries vaccine has been under investigation for the last 40 years. Many in vitro and in vivo studies and some human clinical trials have determined many pertinent aspects regarding vaccine development. The virulence determinants of Strep. mutans, such as Ag I/II, responsible for adherence to surfaces, glucosyltransferase, responsible for the production of glucan, and the glucan-binding protein, responsible for the attachment of glucan to surfaces, have been known to elicit an antigen-specific immune response. It is also known that more than one antigen or a functional part of the genome responsible for these virulence determinants provide a better host response compared with the monogenic vaccine or complete genome of a specific antigen. To enhance the host response, the use of adjuvants has been studied and the routes of antigen administration have been investigated. In recent years, some promising vaccines such as pGJA-P/VAX, LT derivative/Pi , KFD2-rPAc and SBR/GBR-CMV-nirB have been developed and tested in animals. New virulence targets need to be explored. Multicentre collaborative studies and human clinical trials are required and some interest from funders and public health experts should be generated to overcome this hurdle. SIGNIFICANCE AND IMPACT OF THE STUDY: Dental caries is an irreversible, multifactorial opportunistic infection. The treatment is costly, making it a public health problem. Despite many years of promising laboratory research, animal studies and clinical trials, there is no commercially available vaccine today. The research objectives have become more refined from lessons learnt over the years. Multigenic DNA/recombinant vaccines, using the best proved adjuvants with a delivery system for the nasal or sublingual route, should be developed and researched with multicentre collaborative efforts. In addition, new vaccine targets can be identified. To overcome the economic hurdle, funders and public health interest should be stimulated.

Keywords

References

  1. Bai, G., Tian, Y., Wu, J., Gu, Y., Chen, Z., Zeng, F. and Liu, J. (2019). Construction of a fusion anti-caries DNA vaccine in transgenic tomato plants for PAcA gene and cholera toxin B subunit. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1806.
  2. Batista, M.T., Souza, R.D., Ferreira, E.L., Robinette, R., Crowley, P.J., Rodrigues, J.F., Brady, L.J., Ferreira, L.C. et al. (2014) Immunogenicity and in vitro and in vivo protective effects of antibodies targeting a recombinant form of the Streptococcus mutans P1 surface protein. Infect Immun 82, 4978-4988. https://doi.org/10.1128/IAI.02074-14.
  3. Batista, M.T., Ferreira, E.L., Pereira, G.S., Stafford, P., Maeda, D.L.N.F., Rodrigues, J.F., Brady, L.J., Johnston, S.A. et al. (2017) LT adjuvant modulates epitope specificity and improves the efficacy of murine antibodies elicited by sublingual vaccination with the N-terminal domain of Streptococcus mutans P1. Vaccine 35, 7273-7282.
  4. Cao, X.X., Fan, J., Chen, J., Li, Y.H. and Fan, M.W. (2016) Immunogenicity and prediction of epitopic region of antigen Ag I/II and glucosyltransferase from Streptococcus mutans. J Huazhong Univ Sci Technolog Med Sci 36, 416-421. https://doi.org/10.1007/s11596-016-1602-y.
  5. Cao, X.X., Li, Y.H., Ye, Q.L., Hu, X., Wang, T.F. and Fan, M.W. (2017) Self-assembling anticaries mucosal vaccine containing ferritin cage nanostructure and glucan-binding region of S. mutans glucosyltransferase effectively prevents caries formation in rodents. Hum Vaccin Immunother 13, 2332-2340.
  6. Chen, L., Zhu, J., Li, Y., Lu, J., Gao, L., Xu, H., Fan, M. and Yang, X. (2013) Enhanced nasal mucosal delivery and immunogenicity of anti-caries DNA vaccine through incorporation of anionic liposomes in chitosan/DNA complexes. PLoS ONE 8, e71953. https://doi.org/10.1371/journal.pone.0071953.
  7. Childers, N.K., Zhang, S.S. and Michalek, S.M. (1994) Oral immunization of humans with dehydrated liposomes containing Streptococcus mutans glucosyltransferase induces salivary immunoglobulin A2 antibody responses. Oral Microbiol Immunol 9, 146-153.
  8. Childers, N.K., Tong, G. and Michalek, S.M. (1997) Nasal immunization of humans with dehydrated liposomes containing Streptococcus mutans antigen. Oral Microbiol Immunol 12, 329-335.
  9. Childers, N.K., Tong, G., Mitchell, S., Kirk, K., Russell, M.W. and Michalek, S.M. (1999) A controlled clinical study of the effect of nasal immunization with a Streptococcus mutans antigen alone or incorporated into liposomes on induction of immune responses. Infect Immun 67, 618-623.
  10. Childers, N.K., Tong, G., Li, F., Dasanayake, A.P., Kirk, K. and Michalek, S.M. (2002) Humans immunized with Streptococcus mutans antigens by mucosal routes. J Dental Res 81, 48-52.
  11. Childers, N.K., Li, F., Dasanayake, A.P., Li, Y., Kirk, K. and Michalek, S.M. (2006) Immune response in humans to a nasal boost with Streptococcus mutans antigens. Oral Microbiol Immunol 21, 309-313.
  12. Cole, M.F., Emilson, C.G., Hsu, S.D., Li, S.H. and Bowen, W.H. (1984) Effect of peroral immunization of humans with Streptococcus mutans on induction of salivary and serum antibodies and inhibition of experimental infection. Infect Immun 46, 703-709.
  13. Conrads, G., de Soet, J.J., Song, L., Henne, K., Sztajer, H., Wagner-Döbler, I. and Zeng, A.P. (2014) Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level. J Oral Microbiol 6, 26189. https://doi.org/10.3402/jom.v6.26189. eCollection.
  14. Dinis, M., Tavares, D., Veiga-Malta, I., Fonseca, A.J.M.M., Bonifácio, Andrade E., Trigo, G., Ribeiro, A., Videira, A. et al. (2009) Oral therapeutic vaccination with Streptococcus sobrinus recombinant Enolase confers protection against dental caries in rats. J Infect Dis 199, 116-123.
  15. Dinis, M., Trigo, G., Chaves, N., Fonseca, A.J., Ribeiro, A., Tavares, D., Cabrita, A.M. and Ferreira, P. (2011) rEnolase maternal immunization confers caries protection on offspring. J Dent Res 90, 325-330. https://doi.org/10.1177/0022034510391793.
  16. Fan, M.W., Bia, Z., Peng, Z.X., Zhong, Y., Chen, Z., Peng, B. and Jia, R. (2002) A DNA vaccine encoding a cell-surface protein antigen of Streptococcus mutans protects gnotobiotic rats from caries. J Dent Res 81, 784-787.
  17. Ferreira, E.L., Batista, M.T., Cavalcante, R.C., Pegos, V.R., Passos, H.M., Silva, D.A., Balan, A., Ferreira, L.C. et al. (2016) Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans. Mol Oral Microbiol 31, 410-422. https://doi.org/10.1111/omi.12142.
  18. Ferretti, J.J., Shea, C. and Humphrey, M.W. (1980) Cross-reactivity of Streptococcus mutans antigens and human heart tissue. Infect Immun 30, 69-73.
  19. Fukuizumi, T., Inoue, H., Tsujisawa, T. and Uchiyama, C. (1999) Tonsillar application of formalin-killed cells of Streptococcus sobrinus reduces experimental dental caries in rabbits. Infect Immun 67, 426-428.
  20. Gahnberg, L. and Krasse, B. (1983) Salivary immunoglobulin A antibodies and recovery from challenge of Streptococcus mutans after oral administration of Streptococcus mutans vaccine in humans. Infect Immun 39, 514-519.
  21. Gregory, R.L. and Filler, S.J. (1987) Protective secretory immunoglobulin A antibodies in humans following oral immunization with Streptococcus mutans. Infect Immun 55, 2409-2415.
  22. Guo, J.H., Jia, R., Fan, M.W., Bian, Z., Chen, Z. and Peng, B. (2004) Construction and immunogenic characterization of a fusion anti-caries DNA vaccine against PAc and glucosyltransferase I of Streptococcus mutans. J Dent Res 83, 266-270.
  23. Hajishengallis, G. and Michalek, S.M. (1999) Current status of a mucosal vaccine against dental caries. Oral Microbiol Immunol 14, 1-20. Review.
  24. Hajishengallis, G., Russell, M.W. and Michalek, S.M. (1998) Comparison of an adherence domain and a structural region of Streptococcus mutans antigen I/II in protective immunity against dental caries in rats after intranasal immunization. Infect Immun 66, 1740-1743.
  25. Han, T.K. and Dao, M.L. (2005) Differential immunogenicity of a DNA vaccine containing the Streptococcus mutans wall-associated protein A gene versus that containing a truncated derivative antigen A lacking in the hydrophobic carboxyterminal region. DNA Cell Biol 24, 574-581.
  26. Han, T.K. and Dao, M.L. (2007) Enhancement of salivary IgA response to a DNA vaccine against Streptococcus mutans wall-associated protein A in mice by plasmid-based adjuvants. J Med Microbiol 56(Pt 5), 675-680.
  27. Huang, Y., Hajishengallis, G. and Michalek, S.M. (2001) Induction of protective immunity against Streptococcus mutans colonization after mucosal immunization with attenuated Salmonella enterica serovar typhimurium expressing an S. mutans adhesin under the control of in vivo-inducible nirB promoter. Infect Immun 69, 2154-2161.
  28. Huang, L., Xu, Q.A., Liu, C., Fan, M.W. and Li, Y.H. (2013) Anti-caries DNA vaccine-induced secretory immunoglobulin A antibodies inhibit formation of Streptococcus mutans biofilms in vitro. Acta Pharmacol Sin 34, 239-246. https://doi.org/10.1038/aps.2012.145.
  29. Jespersgaard, C., Hajishengallis, G., Huang, Y., Russell, M.W., Smith, D.J. and Michalek, S.M. (1999) Protective immunity against Streptococcus mutans infection in mice after intranasal immunization with the glucan-binding region of S. mutans glucosyltransferase. Infect Immun 67, 6543-6549.
  30. Jia, R., Guo, J.H., Fan, M.W., Bian, Z., Chen, Z., Peng, B. and Fan, B. (2004) Mucosal immunization against dental caries with plasmid DNA encoding pac gene of Streptococcus mutans in rats. Vaccine 22, 2511-2516.
  31. Jia, R., Guo, J.H., Fan, M.W., Bian, Z., Chen, Z., Fan, B., Yu, F. and Xu, Q.A. (2006) Immunogenicity of CTLA4 fusion anti-caries DNA vaccine in rabbits and monkeys. Vaccine 24, 5192-5200.
  32. Jiang, H., Hu, Y., Yang, M., Liu, H. and Jiang, G. (2017) Enhanced immune response to a dual-promoter anti-caries DNA vaccine orally delivered by attenuated Salmonella typhimurium. Immunobiology 222, 730-737.
  33. Koga, T., Oho, T., Shimazaki, Y. and Nakano, Y. (2002) Immunization against dental caries. Vaccine 20, 2027-2044.
  34. Lehner, T., Russell, M.W. and Caldwell, J. (1980) Immunisation with a purified protein from Streptococcus mutans against dental caries in rhesus monkeys. Lancet 1, 995-996.
  35. Lehner, T., Russell, M.W., Caldwell, J. and Smith, R. (1981) Immunization with purified protein antigens from Streptococcus mutans against dental caries in rhesus monkeys. Infect Immun 34, 407-415.
  36. Li, F., Michalek, S.M., Dasanayake, A.P., Li, Y., Kirk, K. and Childers, N.K. (2003) Intranasal immunization of humans with Streptococcus mutans antigens. Oral Microbiol Immunol 8, 271-277.
  37. Li, H., Lu, Y., Xiang, J., Jiang, H., Zhong, Y. and Lu, Y. (2016) Enhancement of immunogenic response and protection in model rats by CSTM nanoparticles anticaries DNA vaccine. Nanomedicine (Lond) 11, 1407-1416.
  38. Liu, C., Fan, M., Bian, Z., Chen, Z. and Li, Y. (2008) Effects of targeted fusion anti-caries DNA vaccine pGJA-P/VAX in rats with caries. Vaccine 26, 6685-6689. https://doi.org/10.1016/j.vaccine.2008.08.041.
  39. Liu, G.X., Xu, Q.A., Jin, J., Li, Y.H., Jia, R., Guo, J.H. and Fan, M.W. (2009) Mucosal and systemic immunization with targeted fusion anti-caries DNA plasmid in young rats. Vaccine 27, 2940-2947. https://doi.org/10.1016/j.vaccine.2009.03.009.
  40. Loesche, W.J. (1986) The identification of bacteria associated with periodontal disease and dental caries by enzymatic methods. Oral Microbiol Immunol 1, 65-72.
  41. Loimaranta, V., Laine, M., Söderling, E., Vasara, E., Rokka, S., Marnila, P., Korhonen, H., Tossavainen, O. et al. (1999) Effects of bovine immune and non-immune whey preparations on the composition and pH response of human dental plaque. Eur J Oral Sci 107, 244-250.
  42. Luz, D.E., Nepomuceno, R.S., Spira, B., Ferreira, R.C., Luz, D.E., Nepomuceno, R.S., Spira, B. and Ferreira, R.C. (2012) The Pst system of Streptococcus mutans is important for phosphate transport and adhesion to abiotic surfaces. Mol Oral Microbiol 27, 172-181. https://doi.org/10.1111/j.2041-1014.2012.00641.x.
  43. Ma, J.K., Hunjan, M., Smith, R., Kelly, C. and Lehner, T. (1990) An investigation into the mechanism of protection by local passive immunization with monoclonal antibodies against Streptococcus mutans. Infect Immun 58, 3407-3414.
  44. Ma, J.K., Hikmat, B.Y., Wycoff, K., Vine, N.D., Chargelegue, D., Yu, L., Hein, M.B. and Lehner, T. (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4, 601-606.
  45. McGhee, J.R., Michalek, S.M., Webb, J., Navia, J.M., Rahman, A.F. and Legler, D.W. (1975) Effective immunity to dental caries: protection of gnotobiotic rats by local immunization with Streptococcus mutans. J Immunol 114, 300-305.
  46. Mestecky, J., McGhee, J.R., Arnold, R.R., Michalek, S.M., Prince, S.J. and Babb, J.L. (1978) Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J Clin Invest 61, 731-737.
  47. Mitoma, M., Oho, T., Michibata, N., Okano, K., Nakano, Y., Fukuyama, M. and Koga, T. (2002) Passive immunization with bovine milk containing antibodies to a cell surface protein antigen-glucosyltransferase fusion protein protects rats against dental caries. Infect Immun 70, 2721-2724.
  48. Niu, Y., Sun, J., Fan, M., Xu, Q.A., Guo, J., Jia, R. and Li, Y. (2009) Construction of a new fusion anti-caries DNA vaccine. J Dent Res 88, 455-460.
  49. Oishi, Y., Onozuka, A., Kato, H., Shimura, N., Imai, S. and Nisizawa, T. (2001) The effect of amino acid spacers on the antigenicity of dimeric peptide--inducing cross-reacting antibodies to a cell surface protein antigen of Streptococcus mutans. Oral Microbiol Immunol 16, 40-44.
  50. Peckham, S. and Awofeso, N. (2014) Water fluoridation: A critical review of the physiological effects of ingested fluoride as a public health intervention. Sci World J 2014, 1-10. https://doi.org/10.1155/2014/293019.
  51. Petersen, P.E., Bourgeois, D., Ogawa, H., Estupinan-Day, S. and Ndiaye, C. (2005) The global burden of oral diseases and risks to oral health. Bull WHO 83, 661-669.
  52. Redman, T.K., Harmon, C.C. and Michalek, S.M. (1994) Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A of Streptococcus sobrinus: persistence and induction of humoral responses in rats. Infect Immunity 62, 3162-3171.
  53. Redman, T.K., Harmon, C.C., Lallone, R.L. and Michalek, S.M. (1995) Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A of Streptococcus sobrinus: dose response and induction of protective humoral responses in rats. Infect Immun 63, 2004-2011.
  54. Redman, T.K., Harmon, C.C. and Michalek, S.M. (1996) Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A (SpaA) of Streptococcus sobrinus: effects of the Salmonella virulence plasmid on the induction of protective and sustained humoral responses in rats. Vaccine 14, 868-878.
  55. Robinette, R.A., Oli, M.W., McArthur, W.P. and Brady, L.J. (2011) A therapeutic anti-Streptococcus mutans monoclonal antibody used in human passive protection trials influences the adaptive immune response. Vaccine 29, 6292-300.
  56. Saito, M., Otake, S., Ohmura, M., Hirasawa, M., Takada, K., Mega, J., Takahashi, I., Kiyono, H. et al. (2001) Protective immunity to Streptococcus mutans induced by nasal vaccination with surface protein antigen and mutant cholera toxin adjuvant. J Infect Dis 183, 823-826.
  57. Salam, M.A., Katz, J., Zhang, P., Hajishengallis, G. and Michalek, S.M. (2006) Immunogenicity of Salmonella vector vaccines expressing SBR of Streptococcus mutans under the control of a T7-nirB (dual) promoter system. Vaccine 24, 5003-5015.
  58. Shimazaki, Y., Mitoma, M., Oho, T., Nakano, Y., Yamashita, Y., Okano, K., Nakano, Y., Fukuyama, M. et al. (2001) Passive immunization with milk produced from an immunized cow prevents oral recolonization by Streptococcus mutans. Clin Diagn Lab Immunol 8, 1136-1139.
  59. da Silva, D.R., da Silva, A.C.B., Filho, R.M., Verli, F.D. and Marinho, S.A. (2014) Vaccine against dental caries: an update. Adv Microbiol 4, 925-933.
  60. Smith, D.J. (2002) Dental caries vaccines: prospects and concerns. Crit Rev Oral Biol Med 13, 335-349.
  61. Smith, R. and Lehner, T. (1981) A radioimmunoassay for serum and gingival crevicular fluid antibodies to a purified protein of Streptococcus mutans. Clin Exp Immunol 43, 417-424.
  62. Smith, D.J. and Taubman, M.A. (1987) Oral immunization of humans with Streptococcus sobrinus glucosyltransferase. Infect Immun 55, 2562-2569.
  63. Smith, D.J. and Taubman, M.A. (1990) Effect of local deposition of antigen on salivary immune responses and reaccumulation of mutans streptococci. J Clin Immunol 10, 273-281.
  64. Smith, D.J. and Taubman, M.A. (1996) Experimental immunization of rats with a Streptococcus mutans 59-kilodalton glucan-binding protein protects against dental caries. Infect Immun 64, 3069-3073.
  65. Smith, D.J., Heschel, R.L., Melvin, J., King, W.F., Pereira, M.B.B. and Taubman, M.A. (1997) Streptococcus mutans glucan binding proteins as dental caries vaccines. In Mucosal solutions. Advances in mucosal immunology ed. Husband, A.J., Beagley, K.W., Clancy, R.L., Collins, A.M., Cripps, A.W. and Emery, D.L. vol. 2. pp. 367-377. Sydney, Australia: University of Sydney Press.
  66. Smith, D.J., King, W.F., Rivero, J. and Taubman, M.A. (2005) Immunological and protective effects of diepitopic subunit dental caries vaccines. Infect Immun 73, 2797-2804.
  67. Spencer, A.J. and Do, L.G. (2016) Caution needed in altering the 'optimum' fluoride concentration in drinking water. Community Dent Oral Epidemiol 44, 101-108.
  68. Su, L.K., Yu, F., Li, Z.F., Zeng, C., Xu, Q.A. and Fan, M.W. (2014) Intranasal co-delivery of IL-6 gene enhances the immunogenicity of anti-caries DNA vaccine. Acta Pharmacol Sin 35, 592-598. https://doi.org/10.1038/aps.2013.184.
  69. Sun, J., Yang, X., Xu, Q.A., Bian, Z., Chen, Z. and Fan, M. (2009) Protective efficacy of two new anti-caries DNA vaccines. Vaccine 27, 7459-7466. https://doi.org/10.1016/j.vaccine.2009.05.007.
  70. Sun, Y., Shi, W., Yang, J.Y., Zhou, D.H., Chen, Y.Q., Zhang, Y., Yang, Y., He, B.X. et al. (2012) Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J Dent Res 91, 941-947.
  71. Sun, Y., Yang, Y., Zhou, D., Cao, Y., Yu, J., Zhao, B., Zhong, M., Li, Y. et al. (2016) Flagellin-rPAc vaccine inhibits biofilm formation but not proliferation of S. mutans. Hum Vaccin Immunother 12, 2847-2854.
  72. Takahashi, I., Okahashi, N., Matsushita, K., Tokuda, M., Kanamoto, T., Munekata, E., Russell, M.W. and Koga, T. (1991) Immunogenicity and protective effect against oral colonization by Streptococcus mutans of synthetic peptides of a streptococcal surface protein antigen. J Immunol 146, 332-336.
  73. Talbman, M.A. and Smith, D.J. (1974) Effects of local immunization with Streptococcus mutans on induction of salivary immunoglobulin A antibody and experimental dental caries in rats. Infect Immun 9, 1079-1091.
  74. Xu, Q.A., Yu, F., Fan, M., Bian, Z., Guo, J., Jia, R., Chen, Z., Peng, B. et al. (2005) Immunogenicity and protective efficacy of a targeted fusion DNA construct against dental caries. Caries Res 39, 422-431.
  75. Xu, Q.A., Yu, F., Fan, M.W., Bian, Z., Chen, Z., Peng, B., Jia, R. and Guo, J.H. (2007) Protective efficacy of a targeted anti-caries DNA plasmid against cariogenic bacteria infections. Vaccine 25, 1191-1195.
  76. Yan, Y.H., Qi, S.C., Su, L.K., Xu, Q.A. and Fan, M.W. (2013) Co-delivery of CCL19 gene enhances anti-caries DNA vaccine pCIA-P immunogenicity in mice by increasing dendritic cell migration to secondary lymphoid tissues. Acta Pharmacol Sin 34, 432-440. https://doi.org/10.1038/aps.2012.153.
  77. Yan, Y.H., Yu, F., Zeng, C., Cao, L.H., Zhang, Z. and Xu, Q.A. (2016) CCL17 combined with CCL19 as a nasal adjuvant enhances the immunogenicity of an anti-cariesDNA vaccine in rodents. Acta Pharmacol Sin 37, 1229-1236. https://doi.org/10.1038/aps.2016.73.
  78. Yang, Y.P., Li, Y.H., Zhang, A.H., Bi, L. and Fan, M.W. (2009) Good manufacturing practices production and analysis of a DNA vaccine against dental caries. Acta Pharmacol Sin 30, 1513-1521. https://doi.org/10.1038/aps.2009.152.
  79. Yang, J., Sun, Y., Bao, R., Zhou, D., Yang, Y., Cao, Y., Yu, J., Zhao, B. et al. (2017) Second-generation flagellin-rPAc fusion protein, KFD2-rPAc, shows high protective efficacy against dental caries with low potential side effects. Sci Rep 7, 11191. https://doi.org/10.1038/s41598-017-10247-8.
  80. Yu, H., Nakano, Y., Yamashita, Y., Oho, T. and Koga, T. (1997) Effects of antibodies against cell surface protein antigen PAc-glucosyltransferase fusion proteins on glucan synthesis and cell adhesion of Streptococcus mutans. Infect Immun 65, 2292-2298.
  81. Zhang, F., Li, Y.H., Fan, M.W., Jia, R., Xu, Q.A., Guo, J.H., Yu, F. and Tian, Q.W. (2007) Enhanced efficacy of CTLA-4 fusion anti-caries DNA vaccines in gnotobiotic hamsters. Acta Pharmacol Sin 28, 1236-1242.
  82. Zhao, W., Zhao, Z. and Russell, M.W. (2011) Characterization of antigen-presenting cells induced by intragastric immunization with recombinant chimeric immunogens constructed from Streptococcus mutans AgI/II and type I or type II heat-labile enterotoxins. Mol Oral Microbiol 26, 200-209. https://doi.org/10.1111/j.2041-1014.2011.00608.x

MeSH Term

Animals
Bacterial Vaccines
Dental Caries
Humans
Streptococcus mutans
Vaccines, DNA

Chemicals

Bacterial Vaccines
Vaccines, DNA

Word Cloud

Created with Highcharts 10.0.0vaccinecariesresponsibleDentalstudiesclinicaltrialsvirulenceresponseantigenyearspublichealthmutansinfectionhumanmanydeterminantsI/IIsurfacesglucanglucan-bindingproteinknowngenomehostadjuvantspromisingvaccinesdevelopedtargetscollaborativeinterestfundersovercomehurdleresearchcausedStreptococcuscommonCariesinvestigationlast40 yearsManyvitrovivodeterminedpertinentaspectsregardingdevelopmentStrepAgadherenceglucosyltransferaseproductionattachmentelicitantigen-specificimmunealsoonefunctionalpartprovidebettercomparedmonogeniccompletespecificenhanceusestudiedroutesadministrationinvestigatedrecentpGJA-P/VAXLTderivative/PiKFD2-rPAcSBR/GBR-CMV-nirBtestedanimalsNewneedexploredMulticentrerequiredexpertsgeneratedSIGNIFICANCEANDIMPACTOFTHESTUDY:irreversiblemultifactorialopportunistictreatmentcostlymakingproblemDespitelaboratoryanimalcommerciallyavailabletodayobjectivesbecomerefinedlessonslearntMultigenicDNA/recombinantusingbestproveddeliverysystemnasalsublingualrouteresearchedmulticentreeffortsadditionnewcanidentifiedeconomicstimulatedvaccine:yet?AgPstSglucosyltransferase

Similar Articles

Cited By