The distinction of CPR bacteria from other bacteria based on protein family content.

Raphaël Méheust, David Burstein, Cindy J Castelle, Jillian F Banfield
Author Information
  1. Raphaël Méheust: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA. ORCID
  2. David Burstein: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA. ORCID
  3. Cindy J Castelle: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.
  4. Jillian F Banfield: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA. jbanfield@berkeley.edu. ORCID

Abstract

Candidate phyla radiation (CPR) bacteria separate phylogenetically from other bacteria, but the organismal distribution of their protein families remains unclear. Here, we leveraged sequences from thousands of uncultivated organisms and identified protein families that co-occur in genomes, thus are likely foundational for lineage capacities. Protein family presence/absence patterns cluster CPR bacteria together, and away from all other bacteria and archaea, partly due to proteins without recognizable homology to proteins in other bacteria. Some are likely involved in cell-cell interactions and potentially important for episymbiotic lifestyles. The diversity of protein family combinations in CPR may exceed that of all other bacteria. Over the bacterial tree, protein family presence/absence patterns broadly recapitulate phylogenetic structure, suggesting persistence of core sets of proteins since lineage divergence. The CPR could have arisen in an episode of dramatic but heterogeneous genome reduction or from a protogenote community and co-evolved with other bacteria.

References

  1. Nat Struct Biol. 1995 Jul;2(7):537-47 [PMID: 7664121]
  2. Mol Microbiol. 2015 Dec;98(6):1037-50 [PMID: 26294390]
  3. ISME J. 2016 Nov;10(11):2702-2714 [PMID: 27137126]
  4. Nature. 2013 Jul 25;499(7459):431-7 [PMID: 23851394]
  5. Nat Microbiol. 2017 Nov;2(11):1533-1542 [PMID: 28894102]
  6. Nat Rev Microbiol. 2018 Oct;16(10):629-645 [PMID: 30181663]
  7. Bioinformatics. 2016 Feb 1;32(3):345-53 [PMID: 26458889]
  8. Nature. 2009 Mar 26;458(7237):422-9 [PMID: 19325621]
  9. J Bacteriol. 2017 Apr 25;199(10): [PMID: 28289087]
  10. Bioinformatics. 2005 Apr 1;21(7):951-60 [PMID: 15531603]
  11. J Mol Biol. 2007 Mar 2;366(4):1305-17 [PMID: 17196979]
  12. Nat Rev Microbiol. 2004 Mar;2(3):241-9 [PMID: 15083159]
  13. Nat Rev Microbiol. 2011 Nov 08;10(1):13-26 [PMID: 22064560]
  14. Science. 2012 Sep 28;337(6102):1661-5 [PMID: 23019650]
  15. Microbiome. 2017 Sep 2;5(1):112 [PMID: 28865481]
  16. Syst Appl Microbiol. 2014 Feb;37(1):35-41 [PMID: 24231291]
  17. Nat Biotechnol. 2017 Nov;35(11):1026-1028 [PMID: 29035372]
  18. Microbiome. 2013 Aug 05;1(1):22 [PMID: 24450983]
  19. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):244-9 [PMID: 25535390]
  20. Trends Microbiol. 2015 Dec;23(12):775-788 [PMID: 26497940]
  21. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4602-E4611 [PMID: 28533395]
  22. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  23. J Mol Biol. 2009 Feb 27;386(3):742-53 [PMID: 19150615]
  24. Nat Methods. 2011 Sep 29;8(10):785-6 [PMID: 21959131]
  25. Curr Biol. 2015 Mar 16;25(6):690-701 [PMID: 25702576]
  26. ISME J. 2017 Dec;11(12):2864-2868 [PMID: 28742071]
  27. Nat Microbiol. 2018 Jul;3(7):773-780 [PMID: 29891864]
  28. BMC Bioinformatics. 2010 Feb 24;11:102 [PMID: 20181237]
  29. Microbiol Mol Biol Rev. 2013 Sep;77(3):323-41 [PMID: 24006467]
  30. Nat Commun. 2015 Feb 27;6:6372 [PMID: 25721682]
  31. Science. 2006 Dec 22;314(5807):1883-4 [PMID: 17185588]
  32. Curr Biol. 2017 Dec 18;27(24):3752-3762.e6 [PMID: 29153320]
  33. Nat Commun. 2016 Oct 24;7:13219 [PMID: 27774985]
  34. Elife. 2013 Aug 27;2:e01084 [PMID: 23991286]
  35. Nature. 2016 Sep 22;537(7621):535-538 [PMID: 27580034]
  36. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  37. Nucleic Acids Res. 2016 Jan 4;44(D1):D372-9 [PMID: 26546518]
  38. J Mol Evol. 1977 Sep 20;10(1):1-6 [PMID: 903983]
  39. Nucleic Acids Res. 2014 Jan;42(Database issue):D231-9 [PMID: 24297252]
  40. Bioinformatics. 1998;14(9):755-63 [PMID: 9918945]
  41. Microbiol Mol Biol Rev. 2012 Dec;76(4):740-72 [PMID: 23204365]
  42. Annu Rev Microbiol. 2010;64:43-60 [PMID: 20420522]
  43. Nat Methods. 2011 Dec 25;9(2):173-5 [PMID: 22198341]
  44. J Mol Biol. 2001 Jan 19;305(3):567-80 [PMID: 11152613]
  45. Environ Microbiol. 2017 Feb;19(2):459-474 [PMID: 27112493]
  46. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 [PMID: 22127870]
  47. J Bacteriol. 1998 Jan;180(1):73-82 [PMID: 9422595]
  48. Nucleic Acids Res. 2004 Oct 12;32(18):5452-63 [PMID: 15479782]
  49. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  50. J Bacteriol. 2015 Dec 07;198(5):746-54 [PMID: 26644434]
  51. Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 [PMID: 11917018]
  52. J Bacteriol. 1999 Mar;181(5):1395-402 [PMID: 10049368]
  53. Nat Microbiol. 2016 Apr 11;1:16048 [PMID: 27572647]
  54. Nature. 2015 Jul 9;523(7559):208-11 [PMID: 26083755]
  55. Nat Genet. 1999 Jan;21(1):108-10 [PMID: 9916801]
  56. Cell. 2018 Mar 8;172(6):1181-1197 [PMID: 29522741]
  57. PLoS Genet. 2012;8(7):e1002815 [PMID: 22829778]
  58. Microbiome. 2018 Jul 3;6(1):122 [PMID: 29970182]
  59. Nat Microbiol. 2018 Jan;3(1):32-37 [PMID: 29062087]
  60. J Biol Chem. 2015 Aug 28;290(35):21393-405 [PMID: 26170452]
  61. Gut Pathog. 2017 May 1;9:27 [PMID: 28469711]
  62. Nat Biotechnol. 2017 Aug 8;35(8):725-731 [PMID: 28787424]
  63. Front Microbiol. 2018 Dec 12;9:2980 [PMID: 30627116]

MeSH Term

Bacteria
Bacterial Proteins
Genome, Bacterial
Metagenomics
Phylogeny

Chemicals

Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0bacteriaCPRproteinfamilyproteinsfamilieslikelylineagepresence/absencepatternsCandidatephylaradiationseparatephylogeneticallyorganismaldistributionremainsunclearleveragedsequencesthousandsuncultivatedorganismsidentifiedco-occurgenomesthusfoundationalcapacitiesProteinclustertogetherawayarchaeapartlyduewithoutrecognizablehomologyinvolvedcell-cellinteractionspotentiallyimportantepisymbioticlifestylesdiversitycombinationsmayexceedbacterialtreebroadlyrecapitulatephylogeneticstructuresuggestingpersistencecoresetssincedivergencearisenepisodedramaticheterogeneousgenomereductionprotogenotecommunityco-evolveddistinctionbasedcontent

Similar Articles

Cited By