A flexible and generalizable model of online latent-state learning.

Amy L Cochran, Josh M Cisler
Author Information
  1. Amy L Cochran: Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America. ORCID
  2. Josh M Cisler: Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America.

Abstract

Many models of classical conditioning fail to describe important phenomena, notably the rapid return of fear after extinction. To address this shortfall, evidence converged on the idea that learning agents rely on latent-state inferences, i.e. an ability to index disparate associations from cues to rewards (or penalties) and infer which index (i.e. latent state) is presently active. Our goal was to develop a model of latent-state inferences that uses latent states to predict rewards from cues efficiently and that can describe behavior in a diverse set of experiments. The resulting model combines a Rescorla-Wagner rule, for which updates to associations are proportional to prediction error, with an approximate Bayesian rule, for which beliefs in latent states are proportional to prior beliefs and an approximate likelihood based on current associations. In simulation, we demonstrate the model's ability to reproduce learning effects both famously explained and not explained by the Rescorla-Wagner model, including rapid return of fear after extinction, the Hall-Pearce effect, partial reinforcement extinction effect, backwards blocking, and memory modification. Lastly, we derive our model as an online algorithm to maximum likelihood estimation, demonstrating it is an efficient approach to outcome prediction. Establishing such a framework is a key step towards quantifying normative and pathological ranges of latent-state inferences in various contexts.

References

  1. Psychol Rev. 1980 Nov;87(6):532-52 [PMID: 7443916]
  2. Curr Opin Neurobiol. 2012 Dec;22(6):1075-81 [PMID: 22959354]
  3. Science. 2009 May 15;324(5929):951-5 [PMID: 19342552]
  4. Q J Exp Psychol B. 2004 Jul;57(3):193-243 [PMID: 15204108]
  5. Science. 2015 Jul 17;349(6245):273-8 [PMID: 26185246]
  6. Am J Psychol. 1957 Sep;70(3):451-2 [PMID: 13458520]
  7. Nat Neurosci. 2015 May;18(5):620-7 [PMID: 25919962]
  8. Front Hum Neurosci. 2012 Jan 24;5:189 [PMID: 22291631]
  9. Nat Neurosci. 2011 Sep 11;14(10):1250-2 [PMID: 21909088]
  10. Nat Rev Neurosci. 2016 Aug;17(8):513-23 [PMID: 27256552]
  11. Neuron. 2010 May 27;66(4):585-95 [PMID: 20510862]
  12. Neuron. 2005 May 19;46(4):681-92 [PMID: 15944135]
  13. Cogn Affect Behav Neurosci. 2014 Jun;14(2):473-92 [PMID: 24647659]
  14. Philos Trans R Soc Lond B Biol Sci. 2001 Sep 29;356(1413):1493-503 [PMID: 11571039]
  15. Nature. 2010 Jan 7;463(7277):49-53 [PMID: 20010606]
  16. Nat Neurosci. 2016 Jul;19(7):973-80 [PMID: 27273768]
  17. J Exp Psychol. 1962 Jul;64:1-6 [PMID: 13920533]
  18. J Exp Psychol. 1962 Nov;64:441-50 [PMID: 13964626]
  19. Front Behav Neurosci. 2013 Nov 18;7:164 [PMID: 24302899]
  20. Psychol Rev. 2010 Jan;117(1):197-209 [PMID: 20063968]
  21. Nature. 2006 Jun 15;441(7095):876-9 [PMID: 16778890]
  22. Science. 2004 Dec 10;306(5703):1944-7 [PMID: 15591205]
  23. Psychol Rev. 2007 Jul;114(3):784-805 [PMID: 17638506]
  24. J Neurosci. 2015 May 27;35(21):8145-57 [PMID: 26019331]
  25. Learn Mem. 2004 Sep-Oct;11(5):485-94 [PMID: 15466298]
  26. Psychol Rev. 1948 Jul;55(4):189-208 [PMID: 18870876]
  27. J Neurosci. 2016 Jul 27;36(30):7817-28 [PMID: 27466328]
  28. Elife. 2017 Mar 15;6: [PMID: 28294944]
  29. Learn Behav. 2012 Sep;40(3):255-68 [PMID: 22927000]
  30. J Exp Psychol Anim Behav Process. 1983 Jul;9(3):248-65 [PMID: 6886630]
  31. J Exp Psychol Gen. 1996 Dec;125(4):370-86 [PMID: 8945788]
  32. J Exp Psychol Anim Behav Process. 2000 Oct;26(4):428-38 [PMID: 11056883]
  33. Elife. 2019 Nov 26;8: [PMID: 31769410]
  34. Annu Rev Clin Psychol. 2013;9:215-48 [PMID: 23537484]
  35. Learn Behav. 2015 Sep;43(3):243-50 [PMID: 26100524]
  36. J Exp Psychol Anim Behav Process. 1979 Jan;5(1):31-42 [PMID: 528877]
  37. J Exp Psychol Anim Behav Process. 1993 Jan;19(1):77-89 [PMID: 8418218]

Grants

  1. K01 MH112876/NIMH NIH HHS
  2. R21 MH106860/NIMH NIH HHS
  3. R21 MH108753/NIMH NIH HHS
  4. R33 MH108753/NIMH NIH HHS

MeSH Term

Algorithms
Computational Biology
Computer Simulation
Conditioning, Classical
Fear
Humans
Learning
Models, Psychological
Reinforcement, Psychology

Word Cloud

Created with Highcharts 10.0.0modellatent-stateextinctionlearninginferencesassociationslatentdescriberapidreturnfearieabilityindexcuesrewardsstatesRescorla-WagnerruleproportionalpredictionapproximatebeliefslikelihoodexplainedeffectonlineManymodelsclassicalconditioningfailimportantphenomenanotablyaddressshortfallevidenceconvergedideaagentsrelydisparatepenaltiesinferstatepresentlyactivegoaldevelopusespredictefficientlycanbehaviordiversesetexperimentsresultingcombinesupdateserrorBayesianpriorbasedcurrentsimulationdemonstratemodel'sreproduceeffectsfamouslyincludingHall-PearcepartialreinforcementbackwardsblockingmemorymodificationLastlyderivealgorithmmaximumestimationdemonstratingefficientapproachoutcomeEstablishingframeworkkeysteptowardsquantifyingnormativepathologicalrangesvariouscontextsflexiblegeneralizable

Similar Articles

Cited By (14)