Temporal changes in transcriptome profile provide insights of White Spot Syndrome Virus infection in Litopenaeus vannamei.

Luca Peruzza, M S Shekhar, K Vinaya Kumar, A Swathi, K Karthic, Chris Hauton, K K Vijayan
Author Information
  1. Luca Peruzza: School of Ocean and Earth Science, University of Southampton, Hampshire, SO14 3ZH, United Kingdom. luca.peruzza@soton.ac.uk. ORCID
  2. M S Shekhar: Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India.
  3. K Vinaya Kumar: Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India.
  4. A Swathi: Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India.
  5. K Karthic: Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India.
  6. Chris Hauton: School of Ocean and Earth Science, University of Southampton, Hampshire, SO14 3ZH, United Kingdom.
  7. K K Vijayan: Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India.

Abstract

Shrimp aquaculture is severely affected by WSSV. Despite an increasing effort to understand host/virus interaction by characterizing changes in gene expression (GE) following WSSV infection, the majority of published studies have focussed on a single time-point, providing limited insight on the development of host-pathogen interaction over the infection cycle. Using RNA-seq, we contrasted GE in gills of Litopenaeus vannamei at 1.5, 18 and 56 hours-post-infection (hpi), between WSSV-challenged and control shrimps. Time course analysis revealed 5097 differentially expressed genes: 63 DEGs were viral genes and their expression in WSSV group either peaked at 18 hpi (and decreased at 56 hpi) or increased linearly up to 56 hpi, suggesting a different role played by these genes during the course of infection. The remaining DEGs showed that WSSV altered the expression of metabolic, immune, apoptotic and cytoskeletal genes and was able to inhibit NF-κB and JAK/STAT pathways. Interestingly, GE changes were not consistent through the course of infection but were dynamic with time, suggesting the complexity of host-pathogen interaction. These data offer novel insights into the cellular functions that are affected during the course of infection and ultimately provide a valuable resource towards our understanding of the host-pathogen dynamics and its variation with time.

References

  1. Genet Mol Res. 2016 Nov 21;15(4): [PMID: 27886336]
  2. J Fish Dis. 2015 Jul;38(7):599-612 [PMID: 24953507]
  3. Micron. 2015 Oct;77:32-40 [PMID: 26093477]
  4. Fish Shellfish Immunol. 2018 Apr;75:132-138 [PMID: 29407618]
  5. Curr Opin Struct Biol. 2007 Aug;17(4):412-8 [PMID: 17723295]
  6. Fish Shellfish Immunol. 2017 Aug;67:27-39 [PMID: 28554835]
  7. PeerJ. 2018 Jul 4;6:e5154 [PMID: 30013834]
  8. J Invertebr Pathol. 2012 Jun;110(2):141-57 [PMID: 22434002]
  9. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  10. Cell Mol Immunol. 2013 Sep;10(5):423-36 [PMID: 23954949]
  11. Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432 [PMID: 30357350]
  12. Virus Res. 2010 Feb;147(2):166-75 [PMID: 19883703]
  13. Fish Shellfish Immunol. 2019 Jan;84:558-571 [PMID: 30352263]
  14. Fish Shellfish Immunol. 2017 Nov;70:710-719 [PMID: 28943297]
  15. Fish Shellfish Immunol. 2016 Sep;56:473-482 [PMID: 27492125]
  16. Dev Comp Immunol. 2019 Jun;95:50-58 [PMID: 30735676]
  17. Biostat Bioinforma Biomath. 2013 Aug;3(3):71-85 [PMID: 25558171]
  18. Dev Comp Immunol. 2015 Feb;48(2):360-8 [PMID: 24796867]
  19. BMC Genomics. 2019 Mar 28;20(1):247 [PMID: 30922216]
  20. Virus Res. 2016 Mar 2;214:65-70 [PMID: 26811904]
  21. Virology. 2015 Dec;486:35-43 [PMID: 26397221]
  22. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  23. Sci Rep. 2016 Jun 09;6:27732 [PMID: 27279169]
  24. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  25. Fish Shellfish Immunol. 2018 Nov;82:84-91 [PMID: 30098445]
  26. Fish Shellfish Immunol. 2019 Apr;87:755-764 [PMID: 30790658]
  27. Dis Aquat Organ. 2001 Mar 9;44(2):155-9 [PMID: 11324818]
  28. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  29. Oncogene. 2010 Jul 29;29(30):4307-16 [PMID: 20514026]
  30. Bioinformatics. 2014 Sep 15;30(18):2598-602 [PMID: 24894503]
  31. Dev Comp Immunol. 2016 Dec;65:289-298 [PMID: 27497874]
  32. Curr Genet. 2008 Aug;54(2):83-94 [PMID: 18622616]
  33. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  34. Dev Comp Immunol. 2014 Feb;42(2):294-301 [PMID: 24120975]
  35. J Virol. 2011 Jul;85(13):6535-47 [PMID: 21507980]
  36. Sci Rep. 2016 Jun 10;6:26780 [PMID: 27283359]
  37. Genet Mol Biol. 2017 Jan-Mar;40(1):168-180 [PMID: 28222204]
  38. Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 [PMID: 27899622]
  39. FASEB J. 2000 Mar;14(3):516-22 [PMID: 10698967]
  40. Can J Microbiol. 1972 Sep;18(9):1511-3 [PMID: 5071236]
  41. PLoS One. 2013 Aug 26;8(8):e73218 [PMID: 23991181]
  42. Virology. 2001 Jul 20;286(1):7-22 [PMID: 11448154]
  43. Sci Rep. 2016 Jul 07;6:28694 [PMID: 27385304]
  44. Fish Shellfish Immunol. 2018 Jul;78:233-237 [PMID: 29684609]
  45. Fish Shellfish Immunol. 2019 May;88:528-539 [PMID: 30885745]
  46. Fish Shellfish Immunol. 2015 Jun;44(2):662-73 [PMID: 25839969]
  47. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  48. J Gen Virol. 2003 Jun;84(Pt 6):1517-1523 [PMID: 12771421]
  49. Virus Res. 2006 Jun;118(1-2):130-5 [PMID: 16413626]
  50. Fish Shellfish Immunol. 2008 Sep;25(3):222-30 [PMID: 18603447]
  51. Virus Res. 2006 Jan;115(1):69-75 [PMID: 16139913]
  52. Nat Commun. 2019 Jan 21;10(1):356 [PMID: 30664654]
  53. J Invertebr Pathol. 2016 May;136:10-22 [PMID: 26880158]
  54. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  55. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  56. Sci Rep. 2014 Nov 25;4:7081 [PMID: 25420880]
  57. Nat Biotechnol. 2014 Sep;32(9):896-902 [PMID: 25150836]
  58. Dis Aquat Organ. 2011 Aug 29;96(1):9-20 [PMID: 21991661]
  59. J Fish Dis. 2008 Jan;31(1):1-18 [PMID: 18086030]
  60. J Biol Chem. 2000 Aug 4;275(31):23852-60 [PMID: 10791955]
  61. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  62. Dis Aquat Organ. 2003 Jun 20;55(1):3-10 [PMID: 12887248]
  63. Fish Shellfish Immunol. 2007 Aug;23(2):430-7 [PMID: 17276083]
  64. Mol Immunol. 2007 Jan;44(4):598-607 [PMID: 16530268]
  65. Plant Mol Biol. 2016 Jun;91(3):319-39 [PMID: 26992400]

Grants

  1. BB/N005058/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Animals
Aquaculture
Decapoda
Genes, Viral
Gills
Host-Pathogen Interactions
Immunity, Innate
Infections
Longitudinal Studies
Penaeidae
Transcriptome
White spot syndrome virus 1

Word Cloud

Created with Highcharts 10.0.0infectionWSSVhpicourseinteractionchangesexpressionGEhost-pathogen56genesaffectedLitopenaeusvannamei18DEGssuggestingtimeinsightsprovideShrimpaquacultureseverelyDespiteincreasingeffortunderstandhost/viruscharacterizinggenefollowingmajoritypublishedstudiesfocussedsingletime-pointprovidinglimitedinsightdevelopmentcycleUsingRNA-seqcontrastedgills15hours-post-infectionWSSV-challengedcontrolshrimpsTimeanalysisrevealed5097differentiallyexpressedgenes:63viralgroupeitherpeakeddecreasedincreasedlinearlydifferentroleplayedremainingshowedalteredmetabolicimmuneapoptoticcytoskeletalableinhibitNF-κBJAK/STATpathwaysInterestinglyconsistentdynamiccomplexitydataoffernovelcellularfunctionsultimatelyvaluableresourcetowardsunderstandingdynamicsvariationTemporaltranscriptomeprofileWhiteSpotSyndromeVirus

Similar Articles

Cited By