Deep learning for multi-year ENSO forecasts.

Yoo-Geun Ham, Jeong-Hwan Kim, Jing-Jia Luo
Author Information
  1. Yoo-Geun Ham: Department of Oceanography, Chonnam National University, Gwangju, South Korea. ygham@jnu.ac.kr.
  2. Jeong-Hwan Kim: Department of Oceanography, Chonnam National University, Gwangju, South Korea.
  3. Jing-Jia Luo: Institute for Climate and Application Research (ICAR)/CICFEM/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, China.

Abstract

Variations in the El Niño/Southern Oscillation (ENSO) are associated with a wide array of regional climate extremes and ecosystem impacts. Robust, long-lead forecasts would therefore be valuable for managing policy responses. But despite decades of effort, forecasting ENSO events at lead times of more than one year remains problematic. Here we show that a statistical forecast model employing a deep-learning approach produces skilful ENSO forecasts for lead times of up to one and a half years. To circumvent the limited amount of observation data, we use transfer learning to train a convolutional neural network (CNN) first on historical simulations and subsequently on reanalysis from 1871 to 1973. During the validation period from 1984 to 2017, the all-season correlation skill of the Nino3.4 index of the CNN model is much higher than those of current state-of-the-art dynamical forecast systems. The CNN model is also better at predicting the detailed zonal distribution of sea surface temperatures, overcoming a weakness of dynamical forecast models. A heat map analysis indicates that the CNN model predicts ENSO events using physically reasonable precursors. The CNN model is thus a powerful tool for both the prediction of ENSO events and for the analysis of their associated complex mechanisms.

References

  1. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006). [DOI: 10.1126/science.1132588]
  2. Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S. & DeWitt, D. G. Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull. Am. Meteorol. Soc. 93, 631–651 (2012). [DOI: 10.1175/BAMS-D-11-00111.1]
  3. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012). [DOI: 10.1175/BAMS-D-11-00094.1]
  4. Cane, M. A., Zebiak, S. E. & Dolan, S. C. Experimental forecasts of El Niño. Nature 321, 827–832 (1986). [DOI: 10.1038/321827a0]
  5. Luo, J.-J., Masson, S., Behera, S. K. & Yamagata, T. Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Clim. 21, 84–93 (2008). [DOI: 10.1175/2007JCLI1412.1]
  6. Tang, Y. et al. Progress in ENSO prediction and predictability study. Natl Sci. Rev. 5, 826–839 (2018). [DOI: 10.1093/nsr/nwy105]
  7. Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. Predictability of El Niño over the past 148 years. Nature 428, 733–736 (2004). [DOI: 10.1038/nature02439]
  8. Gao, C. & Zhang, R. H. The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010–12 La Niña event. Clim. Dyn. 48, 597–617 (2017). [DOI: 10.1007/s00382-016-3097-4]
  9. Hu, S. & Fedorov, A. V. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl Acad. Sci. USA 113, 2005–2010 (2016). [DOI: 10.1073/pnas.1514182113]
  10. Gebbie, G. & Tziperman, E. Predictability of SST-modulated westerly wind bursts. J. Clim. 22, 3894–3909 (2009). [DOI: 10.1175/2009JCLI2516.1]
  11. Izumo, T. et al. T. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci. 3, 168–172 (2010). [DOI: 10.1038/ngeo760]
  12. Park, J. H., Kug, J. S., Li, T. & Behera, S. K. Predicting El Niño beyond 1-year lead: effect of the Western Hemisphere warm pool. Sci. Rep. 8, 14957 (2018). [DOI: 10.1038/s41598-018-33191-7]
  13. LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature 521, 436–444 (2015). [DOI: 10.1038/nature14539]
  14. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).
  15. Oquab, M., Bottou, L., Laptev, I. & Sivic, J. Learning and transferring mid-level image representations using convolutional neural networks. In Proc. IEEE Conf. on Computer Vision And Pattern Recognition 1717–1724 (IEEE, 2014).
  16. Giese, B. S. & Ray, S. El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res. Oceans 116, https://doi.org/10.1029/2010JC006695 (2011).
  17. Bellenger, H., Guilyardi, É., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: from CMIP3 to CMIP5. Clim. Dyn. 42, 1999–2018 (2014). [DOI: 10.1007/s00382-013-1783-z]
  18. Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? Adv. Neural Inf. Process. Syst. 27, 3320–3328 (2014).
  19. Webster, P. J. & Yang, S. Monsoon and ENSO: selectively interactive systems. Q. J. R. Meteorol. Soc. 118, 877–926 (1992). [DOI: 10.1002/qj.49711850705]
  20. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2921–2929 (IEEE, 2016).
  21. Anderson, B. T. On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J. Clim. 20, 1593–1599 (2007). [DOI: 10.1175/JCLI4075.1]
  22. Kug, J. S. & Kang, I. S. Interactive feedback between ENSO and the Indian Ocean. J. Clim. 19, 1784–1801 (2006). [DOI: 10.1175/JCLI3660.1]
  23. Yeh, S. W. et al. El Niño in a changing climate. Nature 461, 511 (2009). [DOI: 10.1038/nature08316]
  24. Zhang, Z., Ren, B. & Zheng, J. A unified complex index to characterize two types of ENSO simultaneously. Sci. Rep. 9, 8373 (2019). [DOI: 10.1038/s41598-019-44617-1]
  25. Pillai, P. A. et al. How distinct are the two flavors of El Niño in retrospective forecasts of Climate Forecast System version 2 (CFSv2)? Clim. Dyn. 48, 3829–3854 (2017). [DOI: 10.1007/s00382-016-3305-2]
  26. Johnson, N. C. How many ENSO flavors can we distinguish? J. Clim. 26, 4816–4827 (2013). [DOI: 10.1175/JCLI-D-12-00649.1]
  27. Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999). [DOI: 10.1038/43848]
  28. Ham, Y. G., Kug, J. S. & Park, J. Y. Two distinct roles of Atlantic SSTs in ENSO variability: north tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett. 40, 4012–4017 (2013). [DOI: 10.1002/grl.50729]
  29. Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. In Eur. Conf. On Computer Vision 818–833 (Springer, 2014)
  30. Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019). [DOI: 10.1038/s41586-019-0912-1]
  31. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). [DOI: 10.1109/MCSE.2007.55]
  32. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning (MIT Press, 2016).
  33. Yoo, J. H. & Kang, I. S. Theoretical examination of a multi-model composite for seasonal prediction. Geophys. Res. Lett. 32, L18707 (2005). [DOI: 10.1029/2005GL023513]
  34. Kalchbrenner, N., Grefenstette, E. & Blunsom, P. A convolutional neural network for modelling sentences. In Proc. 52nd Ann. Meet. Association for Computational Linguistics 655–665 (Association for Computational Linguistics, 2014).
  35. Wu, A., Hsieh, W. W. & Tang, B. Neural network forecasts of the tropical Pacific sea surface temperatures. Neural Netw. 19, 145–154 (2006). [DOI: 10.1016/j.neunet.2006.01.004]
  36. Behringer, D. W. & Xue, Y. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. In Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (AMS 84th Annual Meeting) (AMS, 2004).
  37. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011). [DOI: 10.1002/qj.828]
  38. Kirtman, B. P. et al. The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Am. Meteorol. Soc. 95, 585–601 (2014). [DOI: 10.1175/BAMS-D-12-00050.1]
  39. Luo, J.-J., Liu, G., Hendon, H., Alves, O. & Yamagata, T. Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep. 7, 2276 (2017). [DOI: 10.1038/s41598-017-01479-9]

MeSH Term

Deep Learning
El Nino-Southern Oscillation
Forecasting
Models, Statistical
Temperature

Word Cloud

Created with Highcharts 10.0.0ENSOmodelCNNforecastseventsforecastassociatedleadtimesonelearningdynamicalanalysisVariationsElNiño/SouthernOscillationwidearrayregionalclimateextremesecosystemimpactsRobustlong-leadthereforevaluablemanagingpolicyresponsesdespitedecadeseffortforecastingyearremainsproblematicshowstatisticalemployingdeep-learningapproachproducesskilfulhalfyearscircumventlimitedamountobservationdatausetransfertrainconvolutionalneuralnetworkfirsthistoricalsimulationssubsequentlyreanalysis18711973validationperiod19842017all-seasoncorrelationskillNino34indexmuchhighercurrentstate-of-the-artsystemsalsobetterpredictingdetailedzonaldistributionseasurfacetemperaturesovercomingweaknessmodelsheatmapindicatespredictsusingphysicallyreasonableprecursorsthuspowerfultoolpredictioncomplexmechanismsDeepmulti-year

Similar Articles

Cited By