N-acetyl cysteine-loaded graphene oxide-collagen hybrid membrane for scarless wound healing.

Jialun Li, Chuchao Zhou, Chao Luo, Bei Qian, Shaokai Liu, Yuyang Zeng, Jinfei Hou, Bin Deng, Yang Sun, Jie Yang, Quan Yuan, Aimei Zhong, Jiecong Wang, Jiaming Sun, Zhenxing Wang
Author Information
  1. Jialun Li: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  2. Chuchao Zhou: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  3. Chao Luo: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  4. Bei Qian: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  5. Shaokai Liu: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  6. Yuyang Zeng: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  7. Jinfei Hou: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  8. Bin Deng: Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,430022, China.
  9. Yang Sun: Department of Medical Records Management and Statistics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  10. Jie Yang: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  11. Quan Yuan: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  12. Aimei Zhong: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  13. Jiecong Wang: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  14. Jiaming Sun: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
  15. Zhenxing Wang: Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Abstract

Wound dressings composed of natural polymers, such as type I collagen, possess good biocompatibility, water holding capacity, air permeability, and degradability, and can be used in wound repair. However, due to the persistent oxidative stress in the wound area, the migration and proliferation of fibroblasts might be suppressed, leading to poor healing. Thus, collagen-containing scaffolds are not suitable for accelerated wound healing. Antioxidant N-acetyl cysteine (NAC) is known to reduce the reactive oxygen species (ROS) and has been widely used in the clinic. Theoretically, the carboxyl group of NAC allows loading of graphene oxide (GO) for sustained release and may also enhance the mechanical properties of the collagen scaffold, making it a better wound-dressing material. Herein, we demonstrated an innovative approach for a potential skin-regenerating hybrid membrane using GO incorporated with collagen I and NAC (N-Col-GO) capable of continuously releasing antioxidant NAC. The mechanical stability, water holding capacity, and biocompatibility of the N-Col-GO hybrid membrane were measured . A 20 mm rat full-skin defect model was created to evaluate the repair efficiency of the N-Col-GO hybrid membrane. The vascularization and scar-related genes in the wound area were also examined. Compared to the Col only scaffold, N-Col-GO hybrid membrane exhibited a better mechanical property, stronger water retention capacity, and slower NAC release ability, which likely promote fibroblast migration and proliferation. Treatment with the N-Col-GO hybrid membrane in the rat wound model showed complete healing 14 days after application which was 22% faster than the control group. HE and Masson staining confirmed faster collagen deposition and better epithelization, while CD31 staining revealed a noticeable increase of vascularization. Furthermore, Rt-PCR demonstrated decreased mRNA expression of profibrotic and overexpression of anti-fibrotic factors indicative of the anti-scar effect. These findings suggest that N-Col-GO drug release hybrid membrane serves as a better platform for scarless skin regeneration.

Keywords

References

  1. Biomacromolecules. 2018 Jun 11;19(6):1764-1782 [PMID: 29684268]
  2. Nanoscale. 2018 Jun 21;10(24):11604-11615 [PMID: 29892760]
  3. Tissue Eng Part A. 2015 Sep;21(17-18):2346-55 [PMID: 26066049]
  4. Nanoscale. 2018 May 24;10(20):9547-9560 [PMID: 29745944]
  5. Arch Dermatol Res. 2013 May;305(4):341-52 [PMID: 23321694]
  6. Carbohydr Polym. 2016 Mar 30;139:1-9 [PMID: 26794940]
  7. ACS Appl Mater Interfaces. 2011 Jul;3(7):2607-15 [PMID: 21650218]
  8. Int Wound J. 2017 Feb;14(1):89-96 [PMID: 26688157]
  9. Eur Surg Res. 2012;49(1):35-43 [PMID: 22797712]
  10. FASEB J. 2017 Jun;31(6):2686-2695 [PMID: 28280002]
  11. ACS Appl Mater Interfaces. 2016 Oct 26;8(42):28511-28521 [PMID: 27704757]
  12. Theranostics. 2018 May 12;8(12):3317-3330 [PMID: 29930732]
  13. Br J Ophthalmol. 2015 Apr;99(4):561-5 [PMID: 25614514]
  14. Theranostics. 2017 Jan 1;7(1):117-131 [PMID: 28042321]
  15. Theranostics. 2011 Apr 13;1:240-50 [PMID: 21562631]
  16. ACS Appl Mater Interfaces. 2018 Mar 7;10(9):7717-7729 [PMID: 29461041]
  17. Theranostics. 2016 Oct 1;6(13):2352-2366 [PMID: 27877240]
  18. Int J Nanomedicine. 2018 Apr 18;13:2365-2376 [PMID: 29713167]
  19. Langmuir. 2019 Feb 5;35(5):1495-1502 [PMID: 30089359]
  20. J Diabetes Res. 2017;2017:4826724 [PMID: 28913364]
  21. Nat Commun. 2018 Jul 17;9(1):2784 [PMID: 30018305]
  22. Plast Reconstr Surg. 2003 Nov;112(6):1636-44 [PMID: 14578795]
  23. Adv Healthc Mater. 2016 Jun;5(11):1299-309 [PMID: 26945787]
  24. Science. 2014 Nov 21;346(6212):941-5 [PMID: 25414301]
  25. ACS Appl Mater Interfaces. 2017 Feb 22;9(7):5916-5926 [PMID: 28125204]
  26. Biomaterials. 2017 Apr;122:34-47 [PMID: 28107663]
  27. Redox Biol. 2013 Oct 29;1:532-41 [PMID: 24273736]
  28. Sci Rep. 2017 Apr 03;7:45622 [PMID: 28367979]
  29. J Mater Chem B. 2017 Jan 7;5(1):62-73 [PMID: 32263435]
  30. Int J Nanomedicine. 2017 Oct 04;12:7241-7254 [PMID: 29042773]
  31. J Mech Behav Biomed Mater. 2018 Jan;77:510-518 [PMID: 29040962]
  32. Theranostics. 2017 Jan 1;7(1):97-105 [PMID: 28042319]
  33. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1314-8 [PMID: 11805290]
  34. Small. 2019 Mar;15(12):e1900046 [PMID: 30786150]
  35. Theranostics. 2018 Oct 5;8(18):5025-5038 [PMID: 30429884]
  36. ACS Appl Mater Interfaces. 2018 Sep 19;10(37):30936-30945 [PMID: 30148349]
  37. J Phys Chem B. 2013 Nov 21;117(46):14247-60 [PMID: 24102610]
  38. ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5187-98 [PMID: 25690726]
  39. Burns. 2012 May;38(3):428-37 [PMID: 21978796]
  40. Int J Mol Sci. 2017 Jul 17;18(7): [PMID: 28714933]
  41. Int J Pharm. 2017 Nov 30;533(2):373-376 [PMID: 28705614]
  42. Biomaterials. 2016 May;87:69-81 [PMID: 26901430]
  43. Adv Drug Deliv Rev. 2018 Apr;129:169-193 [PMID: 29501700]
  44. Biomaterials. 2018 Nov;183:185-199 [PMID: 30172244]
  45. Arch Dermatol Res. 2018 Oct;310(8):615-623 [PMID: 30046895]
  46. Lancet. 2016 Oct 1;388(10052):1427-1436 [PMID: 27707499]
  47. Science. 1997 Apr 4;276(5309):75-81 [PMID: 9082989]
  48. Biomaterials. 2013 Mar;34(9):2234-43 [PMID: 23294547]
  49. Circ Res. 2018 Mar 16;122(6):877-902 [PMID: 29700084]
  50. J Mater Sci Mater Med. 2016 May;27(5):89 [PMID: 26975746]
  51. Colloids Surf B Biointerfaces. 2015 Dec 1;136:892-9 [PMID: 26547317]
  52. ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26244-56 [PMID: 26551161]
  53. Front Physiol. 2016 Aug 05;7:341 [PMID: 27547189]
  54. J Wound Care. 2013 Aug;22(8):407-8, 410-12 [PMID: 23924840]
  55. J Biol Chem. 2003 Jan 3;278(1):327-34 [PMID: 12399469]
  56. J Am Chem Soc. 2010 Jun 16;132(23):8180-6 [PMID: 20527938]
  57. Adv Drug Deliv Rev. 2003 Nov 28;55(12):1531-46 [PMID: 14623400]

MeSH Term

Acetylcysteine
Animals
Cell Movement
Collagen
Elastic Modulus
Graphite
Male
Mice
Microscopy, Electron, Scanning
NIH 3T3 Cells
Porosity
Rats
Reactive Oxygen Species
Wound Healing
X-Ray Diffraction

Chemicals

Reactive Oxygen Species
graphene oxide
Graphite
Collagen
Acetylcysteine

Word Cloud

Created with Highcharts 10.0.0woundhybridmembraneNACN-Col-GOcollagenhealingbetterwatercapacitygraphenereleasemechanicalbiocompatibilityholdingusedrepairareamigrationproliferationN-acetylreactiveoxygenspeciesgroupoxideGOalsoscaffolddemonstratedratmodelvascularizationfasterstainingscarlessWounddressingscomposednaturalpolymerstypepossessgoodairpermeabilitydegradabilitycanHoweverduepersistentoxidativestressfibroblastsmightsuppressedleadingpoorThuscollagen-containingscaffoldssuitableacceleratedAntioxidantcysteineknownreduceROSwidelyclinicTheoreticallycarboxylallowsloadingsustainedmayenhancepropertiesmakingwound-dressingmaterialHereininnovativeapproachpotentialskin-regeneratingusingincorporatedcapablecontinuouslyreleasingantioxidantstabilitymeasured20mmfull-skindefectcreatedevaluateefficiencyscar-relatedgenesexaminedComparedColexhibitedpropertystrongerretentionslowerabilitylikelypromotefibroblastTreatmentshowedcomplete14daysapplication22%controlHEMassonconfirmeddepositionepithelizationCD31revealednoticeableincreaseFurthermoreRt-PCRdecreasedmRNAexpressionprofibroticoverexpressionanti-fibroticfactorsindicativeanti-scareffectfindingssuggestdrugservesplatformskinregenerationcysteine-loadedoxide-collagen

Similar Articles

Cited By