A novel adaptive apodization to improve the resolution of phased subarray imaging in medical ultrasound.

Masume Sadeghi, Ali Mahloojifar
Author Information
  1. Masume Sadeghi: Department of Biomedical Engineering, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box: 14115-194, Tehran, Islamic Republic of Iran.
  2. Ali Mahloojifar: Department of Biomedical Engineering, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box: 14115-194, Tehran, Islamic Republic of Iran. mahlooji@modares.ac.ir.

Abstract

PURPOSE: Phased subarray imaging (PSA) was previously proposed to extend the receive aperture length. Using overlapped subarrays as transmitters in PSA leads to decrement of sidelobe levels of the overall beam compared to full phased array imaging (PHA). This paper proposes an adaptive compounding of subarray images in PSA to improve both the resolution and contrast compared with PHA.
METHOD: Adaptive apodization (ADAP) is defined proportional to the beamformed responses of subarrays such that the overall energy after compounding is minimized.
RESULTS: The simulation and experimental results validate the performance of applying ADAP in PSA. The full width at half maximum (FWHM) at a depth of 30 mm in the proposed PSA is about 0.2 mm, compared to a FWHM of 0.6 mm with PHA imaging. Measuring the contrast ratio index shows that the ADAP method also improves the contrast in PSA imaging at least 25% compared to PHA imaging.
CONCLUSION: Applying the proposed ADAP, besides conventional compounding in PSA imaging, leads to improvement of both the resolution and contrast compared to PHA imaging.

Keywords

References

  1. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(1):196-207 [PMID: 18244172]
  2. J Med Ultrason (2001). 2017 Jan;44(1):51-62 [PMID: 27796515]
  3. IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jul;48(4):1023-30 [PMID: 11477759]
  4. IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(6):768-74 [PMID: 18290214]
  5. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Sep;56(9):1868-79 [PMID: 19811990]
  6. IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Feb;63(2):256-65 [PMID: 26742130]
  7. Ultrason Imaging. 2001 Jan;23(1):1-18 [PMID: 11556800]
  8. IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):858-67 [PMID: 21507765]
  9. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2187-97 [PMID: 19942506]
  10. J Med Ultrason (2001). 2017 Apr;44(2):155-165 [PMID: 28084559]
  11. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1510-9 [PMID: 18238697]
  12. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Feb;56(2):314-25 [PMID: 19251518]
  13. IEEE Trans Med Imaging. 2009 Jul;28(7):1051-61 [PMID: 19131299]
  14. IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jan;52(1):51-64 [PMID: 15742562]
  15. IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jan;52(1):37-50 [PMID: 15742561]
  16. IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Apr;59(4):660-7 [PMID: 22547277]
  17. IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):76-85 [PMID: 24402897]
  18. IEEE Trans Biomed Eng. 1983 Aug;30(8):438-52 [PMID: 6629379]

MeSH Term

Algorithms
Software
Ultrasonography

Word Cloud

Created with Highcharts 10.0.0imagingPSAcomparedPHAsubarraycontrastADAPproposedcompoundingresolutionapodizationPhasedsubarraysleadsoverallfullphasedadaptiveimproveAdaptiveFWHM0PURPOSE:previouslyextendreceiveaperturelengthUsingoverlappedtransmittersdecrementsidelobelevelsbeamarraypaperproposesimagesMETHOD:definedproportionalbeamformedresponsesenergyminimizedRESULTS:simulationexperimentalresultsvalidateperformanceapplyingwidthhalfmaximumdepth30 mm2 mm6 mmMeasuringratioindexshowsmethodalsoimprovesleast25%CONCLUSION:ApplyingbesidesconventionalimprovementnovelmedicalultrasoundContrastResolution

Similar Articles

Cited By