Cytokine Effects on the Entry of Filovirus Envelope Pseudotyped Virus-Like Particles into Primary Human Macrophages.

Tzanko S Stantchev, Autumn Zack-Taylor, Nicholas Mattson, Klaus Strebel, Christopher C Broder, Kathleen A Clouse
Author Information
  1. Tzanko S Stantchev: Division of Biotechnology Review and Research 1 (DBRR1), Office of Biotechnology Products (OBP), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA. tzanko.stantchev@fda.hhs.gov.
  2. Autumn Zack-Taylor: Division of Biotechnology Review and Research 1 (DBRR1), Office of Biotechnology Products (OBP), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA. autumn.zack-taylor@fda.hhs.gov.
  3. Nicholas Mattson: Division of Biotechnology Review and Research 1 (DBRR1), Office of Biotechnology Products (OBP), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA. nicholas.mattson@fda.hhs.gov.
  4. Klaus Strebel: Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA. kstrebel@niaid.nih.gov.
  5. Christopher C Broder: Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA. christopher.broder@usuhs.edu. ORCID
  6. Kathleen A Clouse: Division of Biotechnology Review and Research 1 (DBRR1), Office of Biotechnology Products (OBP), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA. kathleen.clouse@fda.hhs.gov.

Abstract

Macrophages are one of the first and also a major site of filovirus replication and, in addition, are a source of multiple cytokines, presumed to play a critical role in the pathogenesis of the viral infection. Some of these cytokines are known to induce macrophage phenotypic changes in vitro, but how macrophage polarization may affect the cell susceptibility to filovirus entry remains largely unstudied. We generated different macrophage subsets using cytokine pre-treatment and subsequently tested their ability to fuse with beta-lactamase containing virus-like particles (VLP), pseudotyped with the surface glycoprotein of Ebola virus (EBOV) or the glycoproteins of other clinically relevant filovirus species. We found that pre-incubation of primary human monocyte-derived macrophages (MDM) with interleukin-10 (IL-10) significantly enhanced filovirus entry into cells obtained from multiple healthy donors, and the IL-10 effect was preserved in the presence of pro-inflammatory cytokines found to be elevated during EBOV disease. In contrast, fusion of IL-10-treated macrophages with influenza hemagglutinin/neuraminidase pseudotyped VLPs was unchanged or slightly reduced. Importantly, our in vitro data showing enhanced virus entry are consistent with the correlation established between elevated serum IL-10 and increased mortality in filovirus infected patients and also reveal a novel mechanism that may account for the IL-10-mediated increase in filovirus pathogenicity.

Keywords

References

  1. JCI Insight. 2019 Jan 10;4(1):null [PMID: 30626757]
  2. Mediators Inflamm. 2015;2015:816460 [PMID: 26089604]
  3. PLoS Pathog. 2016 Mar 04;12(3):e1005487 [PMID: 26943817]
  4. J Immunol. 2013 May 15;190(10):5237-46 [PMID: 23596310]
  5. Clin Infect Dis. 2017 Mar 1;64(5):696-697 [PMID: 28184408]
  6. MBio. 2017 Apr 25;8(2): [PMID: 28442605]
  7. Adv Immunol. 2013;120:163-84 [PMID: 24070384]
  8. J Hosp Infect. 2015 May;90(1):1-9 [PMID: 25655197]
  9. J Interferon Cytokine Res. 2014 Feb;34(2):79-89 [PMID: 24102579]
  10. Mem Inst Oswaldo Cruz. 2015 Dec;110(8):945-55 [PMID: 26676319]
  11. JCI Insight. 2017 Mar 23;2(6):e88864 [PMID: 28352651]
  12. PLoS One. 2013 Apr 23;8(4):e61904 [PMID: 23626748]
  13. J Immunol. 2005 Mar 1;174(5):3015-23 [PMID: 15728515]
  14. Nat Rev Immunol. 2008 May;8(5):327-36 [PMID: 18421305]
  15. Lancet Infect Dis. 2017 Jun;17(6):654-660 [PMID: 28258817]
  16. AIDS Res Hum Retroviruses. 1990 Oct;6(10):1157-61 [PMID: 1701314]
  17. J Infect Dis. 2018 Nov 22;218(suppl_5):S409-S417 [PMID: 30085162]
  18. Innate Immun. 2015 Jul;21(5):546-52 [PMID: 25466232]
  19. Emerg Infect Dis. 2014 Oct;20(10):1683-90 [PMID: 25279581]
  20. Scand J Immunol. 2014 May;79(5):305-14 [PMID: 24521472]
  21. Virology. 2006 Aug 1;351(2):260-70 [PMID: 16678231]
  22. J Virol. 2009 Apr;83(7):2883-91 [PMID: 19144707]
  23. Immunobiology. 2005;210(2-4):77-86 [PMID: 16164014]
  24. Oncotarget. 2016 Aug 9;7(32):52294-52306 [PMID: 27418133]
  25. Trends Immunol. 2013 May;34(5):216-23 [PMID: 23218730]
  26. PLoS One. 2015 Aug 19;10(8):e0135728 [PMID: 26287732]
  27. J Infect Dis. 2016 Mar 1;213(5):703-11 [PMID: 26582961]
  28. Immunobiology. 2014 Sep;219(9):695-703 [PMID: 24916404]
  29. JAKSTAT. 2012 Jul 1;1(3):159-67 [PMID: 24058765]
  30. J Exp Med. 2004 Jul 19;200(2):169-79 [PMID: 15249592]
  31. J Infect Dis. 2015 Oct 1;212 Suppl 2:S247-57 [PMID: 25877552]
  32. J Virol. 2013 Apr;87(7):3801-14 [PMID: 23345511]
  33. Curr Mol Med. 2009 Mar;9(2):174-85 [PMID: 19275625]
  34. Clin Exp Immunol. 2001 Jun;124(3):453-60 [PMID: 11472407]
  35. Curr Clin Microbiol Rep. 2015 Sep;2(3):115-124 [PMID: 26509109]
  36. PLoS Pathog. 2014 Nov 20;10(11):e1004509 [PMID: 25412102]
  37. Virology. 2001 May 25;284(1):20-5 [PMID: 11352664]
  38. Gene. 1994 May 16;142(2):167-74 [PMID: 8194748]
  39. Virology. 2010 Jun 20;402(1):203-8 [PMID: 20394957]
  40. PLoS Negl Trop Dis. 2010 Oct 05;4(10):null [PMID: 20957152]
  41. PLoS Negl Trop Dis. 2011 Oct;5(10):e1359 [PMID: 22028943]
  42. Viruses. 2015 Sep 29;7(10):5172-90 [PMID: 26426036]
  43. Emerg Infect Dis. 2019 Feb;25(2):290-298 [PMID: 30666927]
  44. FEMS Immunol Med Microbiol. 2012 Apr;64(3):295-313 [PMID: 22268692]
  45. Biosecur Bioterror. 2011 Dec;9(4):361-71 [PMID: 22070137]
  46. J Infect Dis. 1999 Feb;179 Suppl 1:S188-91 [PMID: 9988183]
  47. Malar J. 2012 Aug 01;11:253 [PMID: 22853732]
  48. BMC Infect Dis. 2016 Nov 25;16(1):708 [PMID: 27887599]
  49. Clin Exp Immunol. 2002 Apr;128(1):163-8 [PMID: 11982604]
  50. J Virol. 2010 Jan;84(1):27-33 [PMID: 19846529]
  51. J Virol. 2008 Jul;82(14):7238-42 [PMID: 18448524]
  52. Mediators Inflamm. 2014;2014:561459 [PMID: 24876674]
  53. Viruses. 2011 Jul;3(7):982-1000 [PMID: 21994766]
  54. Trends Immunol. 2004 Dec;25(12):677-86 [PMID: 15530839]
  55. Antiviral Res. 2016 Nov;135:62-73 [PMID: 27743917]
  56. J Infect Dis. 2011 Nov;204 Suppl 3:S804-9 [PMID: 21987755]
  57. Science. 2009 Jul 10;325(5937):204-6 [PMID: 19590002]
  58. J Infect Dis. 2018 Nov 22;218(suppl_5):S496-S503 [PMID: 30101349]
  59. Clin Infect Dis. 2016 Aug 15;63(4):460-7 [PMID: 27353663]
  60. Viruses. 2015 Oct 23;7(10):5489-507 [PMID: 26512687]
  61. Clin Infect Dis. 2016 Oct 15;63(8):1026-33 [PMID: 27531847]
  62. J Virol. 2015 Oct;89(19):9865-74 [PMID: 26202234]
  63. Sci Transl Med. 2017 Apr 12;9(385): [PMID: 28404864]
  64. Cytometry A. 2004 Dec;62(2):169-73 [PMID: 15536642]
  65. DNA Cell Biol. 2019 Feb;38(2):115-120 [PMID: 30615471]
  66. FASEB J. 2006 Dec;20(14):2519-30 [PMID: 17023517]
  67. J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81 [PMID: 17940973]
  68. J Cell Physiol. 2018 Sep;233(9):6425-6440 [PMID: 29319160]
  69. Sci Rep. 2016 Jun 21;6:27944 [PMID: 27323685]
  70. J Virol. 2001 Nov;75(22):11025-33 [PMID: 11602743]
  71. Lancet. 2011 Mar 5;377(9768):849-62 [PMID: 21084112]
  72. Viruses. 2015 Jan 06;7(1):37-51 [PMID: 25569078]
  73. J Infect Dis. 2011 Jul 15;204(2):200-8 [PMID: 21571728]
  74. Rev Med Virol. 2015 Nov;25(6):406-30 [PMID: 26467906]
  75. Neuron. 2014 Sep 3;83(5):1098-116 [PMID: 25132469]
  76. Front Biosci. 2008 Jan 01;13:453-61 [PMID: 17981560]
  77. Trends Microbiol. 2001 Feb;9(2):86-92 [PMID: 11173248]
  78. Virology. 2004 Sep 1;326(2):280-7 [PMID: 15302213]
  79. Nucleic Acid Ther. 2014 Jun;24(3):179-85 [PMID: 24655055]
  80. Lancet. 2000 Jun 24;355(9222):2210-5 [PMID: 10881895]
  81. J Immunol. 2014 Sep 1;193(5):2373-83 [PMID: 25057003]
  82. J Med Virol. 2001 Nov;65(3):561-6 [PMID: 11596094]
  83. Immunity. 2014 Jul 17;41(1):14-20 [PMID: 25035950]
  84. J Virol. 2005 Feb;79(4):2413-9 [PMID: 15681442]
  85. Cell Immunol. 1983 Dec;82(2):394-402 [PMID: 6606492]
  86. J Leukoc Biol. 2018 Oct;104(4):717-727 [PMID: 30095866]
  87. PLoS One. 2012;7(8):e42656 [PMID: 22880072]
  88. Immunity. 2014 Feb 20;40(2):274-88 [PMID: 24530056]
  89. Clin Transl Immunology. 2015 Nov 06;4(11):e49 [PMID: 26682056]
  90. Immunol Lett. 2002 Mar 1;80(3):169-79 [PMID: 11803049]
  91. MBio. 2017 Sep 26;8(5): [PMID: 28951472]
  92. J Infect Dis. 2007 Nov 15;196 Suppl 2:S357-63 [PMID: 17940971]
  93. Cell Mol Life Sci. 2011 Sep;68(18):3095-107 [PMID: 21188461]
  94. Immunobiology. 2015 May;220(5):545-54 [PMID: 25582402]
  95. Front Microbiol. 2017 Aug 17;8:1571 [PMID: 28861075]
  96. J Infect Dis. 2016 Oct 15;214(suppl 3):S250-S257 [PMID: 27638946]
  97. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15889-94 [PMID: 14673108]
  98. J Infect Dis. 2014 Aug 15;210(4):558-66 [PMID: 24526742]
  99. Clin Rev Allergy Immunol. 2016 Feb;50(1):97-113 [PMID: 26450621]
  100. Virology. 2012 Feb 20;423(2):119-24 [PMID: 22197674]
  101. J Immunol. 1999 Apr 15;162(8):4606-13 [PMID: 10202000]
  102. Am J Pathol. 2003 Dec;163(6):2347-70 [PMID: 14633608]
  103. J Immunol Methods. 2012 Jan 31;375(1-2):196-206 [PMID: 22075274]
  104. PLoS One. 2013 Nov 15;8(11):e80908 [PMID: 24260507]
  105. Genome Biol. 2007;8(8):R174 [PMID: 17725815]
  106. J Infect Dis. 2017 Apr 1;215(7):1107-1110 [PMID: 28498995]
  107. Emerg Infect Dis. 2015 Oct;21(10):1777-83 [PMID: 26402165]
  108. Nature. 2016 May 5;533(7601):100-4 [PMID: 27147028]
  109. J Immunol. 1995 Nov 15;155(10):4926-32 [PMID: 7594497]
  110. Cytokine. 2000 Sep;12(9):1312-21 [PMID: 10975989]
  111. Antiviral Res. 2012 Mar;93(3):416-28 [PMID: 22333482]
  112. Curr Top Microbiol Immunol. 2014;380:129-44 [PMID: 25004816]
  113. Brain Res. 2015 Sep 4;1619:1-11 [PMID: 25578260]

Grants

  1. OCET 2015916/FDA HHS

MeSH Term

Cells, Cultured
Cytokines
Ebolavirus
Filoviridae
Filoviridae Infections
Humans
Interleukin-10
Macrophages
Membrane Fusion
Viral Envelope Proteins
Virus Internalization

Chemicals

Cytokines
Viral Envelope Proteins
Interleukin-10

Word Cloud

Created with Highcharts 10.0.0filoviruscytokinesIL-10macrophageentryvirusEBOVMacrophagesalsomultiplevitromaypseudotypedEbolafoundmacrophagesinterleukin-10enhancedelevatedonefirstmajorsitereplicationadditionsourcepresumedplaycriticalrolepathogenesisviralinfectionknowninducephenotypicchangespolarizationaffectcellsusceptibilityremainslargelyunstudiedgenerateddifferentsubsetsusingcytokinepre-treatmentsubsequentlytestedabilityfusebeta-lactamasecontainingvirus-likeparticlesVLPsurfaceglycoproteinglycoproteinsclinicallyrelevantspeciespre-incubationprimaryhumanmonocyte-derivedMDMsignificantlycellsobtainedhealthydonorseffectpreservedpresencepro-inflammatorydiseasecontrastfusionIL-10-treatedinfluenzahemagglutinin/neuraminidaseVLPsunchangedslightlyreducedImportantlydatashowingconsistentcorrelationestablishedserumincreasedmortalityinfectedpatientsrevealnovelmechanismaccountIL-10-mediatedincreasepathogenicityCytokineEffectsEntryFilovirusEnvelopePseudotypedVirus-LikeParticlesPrimaryHumanfiloviruses

Similar Articles

Cited By