Identification of putative amine receptor complement in the eyestalk of the crayfish, Procambarus clarkii.

Andrew E Christie
Author Information
  1. Andrew E Christie: Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA. crabman@pbrc.hawaii.edu.

Abstract

In decapod crustaceans, the amines dopamine, octopamine, serotonin, and histamine are known to serve as locally released and/or circulating neuromodulators. While many studies have focused on determining the modulatory actions of amines on decapod nervous systems, comparatively little is known about the identity of the receptors through which they exert their actions. Here, a crayfish, Procambarus clarkii, tissue-specific transcriptome was used to identify putative amine receptors in the eyestalk, a structure composed largely of the eyestalk ganglia, including the neuroendocrine X-organ-sinus gland system, and retina. Transcripts encoding 17 distinct putative amine receptors, three dopamine (one dopamine 1-like, one dopamine 2-like, and one dopamine/ecdysteroid-like), five octopamine (one alpha-like, three beta-like, and one octopamine/tyramine-like), three serotonin (two type-1-like and one type-7-like), and six histamine (five histamine-gated chloride channel A-like and one histamine-gated chloride channel B-like) were identified in the assembly. Comparison of the nucleotide sequence of the transcript encoding one predicted type-1-like serotonin receptor with that cloned previously from the P. clarkii nervous system shows the two sequences to be essentially identical, providing increased support for the validity of the transcripts used to deduce the proteins reported here. Reciprocal BLAST and structural/functional domain analyses support the protein family annotations ascribed to the putative P. clarkii receptors. These data represent the first large-scale description of amine receptors from P. clarkii, and as such provide a new resource for initiating gene-based studies of aminergic control of physiology/behavior at the level of receptors in this species.

Keywords

References

  1. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  2. Cell Mol Neurobiol. 2005 Mar;25(2):223-44 [PMID: 16050035]
  3. Comp Biochem Physiol A Mol Integr Physiol. 2004 Dec;139(4):495-502 [PMID: 15596395]
  4. Microsc Res Tech. 2003 Feb 15;60(3):325-35 [PMID: 12539162]
  5. Invert Neurosci. 1995;1(2):105-12 [PMID: 9372135]
  6. Cell Tissue Res. 1991 Oct;266(1):197-207 [PMID: 1684138]
  7. J Neurophysiol. 1987 Sep;58(3):584-97 [PMID: 3116173]
  8. Brain Res. 2010 Aug 12;1348:42-54 [PMID: 20558147]
  9. BMC Biol. 2017 Jan 30;15(1):6 [PMID: 28137258]
  10. Curr Opin Neurobiol. 2011 Aug;21(4):544-52 [PMID: 21689926]
  11. J Exp Biol. 2008 Jan;211(Pt 1):92-105 [PMID: 18083737]
  12. Comp Biochem Physiol Part D Genomics Proteomics. 2019 Jun;30:262-282 [PMID: 30974344]
  13. Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432 [PMID: 30357350]
  14. Nucleic Acids Res. 2019 Jan 8;47(D1):D759-D765 [PMID: 30364959]
  15. Brain Behav Evol. 2002;60(6):360-9 [PMID: 12563168]
  16. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Nov;195(11):989-1009 [PMID: 19823843]
  17. Biol Cybern. 2006 Dec;95(6):537-54 [PMID: 17151878]
  18. Comp Biochem Physiol B Biochem Mol Biol. 2007 Jan;146(1):9-19 [PMID: 17134931]
  19. PLoS One. 2013 Sep 18;8(9):e74489 [PMID: 24058575]
  20. Ann N Y Acad Sci. 1998 Nov 16;860:35-50 [PMID: 9928300]
  21. Gen Comp Endocrinol. 2016 Sep 15;236:157-173 [PMID: 27432815]
  22. Gen Comp Endocrinol. 2013 Jun 15;187:117-35 [PMID: 23578900]
  23. Comp Biochem Physiol B Biochem Mol Biol. 2018 Dec;226:10-17 [PMID: 30110659]
  24. Comp Biochem Physiol Part D Genomics Proteomics. 2012 Mar;7(1):35-58 [PMID: 22137767]
  25. Gene. 2005 Jun 20;353(1):41-52 [PMID: 15935574]
  26. Neural Dev. 2011 Jan 04;6:2 [PMID: 21205292]
  27. PLoS One. 2015 Dec 30;10(12):e0145964 [PMID: 26716450]
  28. Cell Tissue Res. 2011 Jul;345(1):41-67 [PMID: 21597913]
  29. J Neurophysiol. 1994 Mar;71(3):1088-95 [PMID: 8201404]
  30. Cell Mol Neurobiol. 2005 Mar;25(2):345-70 [PMID: 16047546]
  31. J Comp Neurol. 2004 Jun 7;473(4):526-37 [PMID: 15116388]
  32. Comp Biochem Physiol B Biochem Mol Biol. 2006 Mar;143(3):294-301 [PMID: 16426885]
  33. J Exp Biol. 2007 Nov;210(Pt 22):3962-9 [PMID: 17981864]
  34. J Exp Biol. 2015 Sep;218(Pt 17):2745-52 [PMID: 26139659]
  35. Tissue Cell. 2008 Apr;40(2):113-26 [PMID: 18067933]
  36. Comp Biochem Physiol A Mol Integr Physiol. 2017 Jan;203:83-90 [PMID: 27593450]
  37. Cell Tissue Res. 1999 Mar;295(3):537-51 [PMID: 10022973]
  38. Biochim Biophys Acta. 2006 Jul;1759(7):328-39 [PMID: 16949686]
  39. Synapse. 2011 Jun;65(6):497-504 [PMID: 20936686]
  40. Neurosignals. 2004 Jan-Apr;13(1-2):50-69 [PMID: 15004425]
  41. J Neurosci. 2012 Apr 18;32(16):5638-45 [PMID: 22514325]
  42. Cell Mol Life Sci. 2010 Dec;67(24):4135-69 [PMID: 20725764]
  43. Annu Rev Physiol. 2007;69:291-316 [PMID: 17009928]
  44. Brain Res. 1987 Feb 17;403(2):371-4 [PMID: 3828826]
  45. Dev Neurobiol. 2009 Jul;69(8):530-45 [PMID: 19373861]
  46. Comp Biochem Physiol Part D Genomics Proteomics. 2012 Jun;7(2):124-60 [PMID: 22305610]
  47. Curr Opin Neurobiol. 2016 Dec;41:149-157 [PMID: 27693928]
  48. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Mar;191(3):231-9 [PMID: 15685443]
  49. Mar Genomics. 2018 Jun;39:45-63 [PMID: 29526397]
  50. Chronobiol Int. 2009 Aug;26(6):1136-68 [PMID: 19731110]
  51. Trends Neurosci. 2001 Mar;24(3):146-54 [PMID: 11182454]
  52. J Exp Biol. 2001 Jun;204(Pt 12):2035-48 [PMID: 11441046]
  53. Science. 2000 Mar 24;287(5461):2185-95 [PMID: 10731132]
  54. BMC Genomics. 2016 Nov 4;17(1):868 [PMID: 27809760]
  55. Comp Biochem Physiol C Toxicol Pharmacol. 2006 Mar-Apr;142(3-4):220-30 [PMID: 16298168]
  56. Gene. 2015 Feb 15;557(1):28-34 [PMID: 25479010]
  57. Biol Bull. 2002 Apr;202(2):108-36 [PMID: 11971808]
  58. J Neurosci. 1983 Nov;3(11):2263-9 [PMID: 6415242]
  59. Microsc Res Tech. 1999 Jan 15-Feb 1;44(2-3):105-20 [PMID: 10084820]

MeSH Term

Animals
Astacoidea
Ganglia, Invertebrate
Receptors, Biogenic Amine
Retina

Chemicals

Receptors, Biogenic Amine

Word Cloud

Created with Highcharts 10.0.0onereceptorsclarkiidopamineserotoninputativeamineeyestalkthreePdecapodaminesoctopaminehistamineknownstudiesactionsnervouscrayfishProcambarustranscriptomeusedsystemencodingfivetwotype-1-likehistamine-gatedchloridechannelreceptorsupportcrustaceansservelocallyreleasedand/orcirculatingneuromodulatorsmanyfocuseddeterminingmodulatorysystemscomparativelylittleidentityexerttissue-specificidentifystructurecomposedlargelygangliaincludingneuroendocrineX-organ-sinusglandretinaTranscripts17distinct1-like2-likedopamine/ecdysteroid-likealpha-likebeta-likeoctopamine/tyramine-liketype-7-likesixA-likeB-likeidentifiedassemblyComparisonnucleotidesequencetranscriptpredictedclonedpreviouslyshowssequencesessentiallyidenticalprovidingincreasedvaliditytranscriptsdeduceproteinsreportedReciprocalBLASTstructural/functionaldomainanalysesproteinfamilyannotationsascribeddatarepresentfirstlarge-scaledescriptionprovidenewresourceinitiatinggene-basedaminergiccontrolphysiology/behaviorlevelspeciesIdentificationcomplementDopamineHistaminesilicominingOctopamineTyramine

Similar Articles

Cited By