OX40 and OX40L protein expression of tumor infiltrating lymphocytes in non-small cell lung cancer and its role in clinical outcome and relationships with other immune biomarkers.

Yayi He, Xiaoshen Zhang, Keyi Jia, Rafal Dziadziuszko, Sha Zhao, Juan Deng, Hao Wang, Fred R Hirsch, Caicun Zhou
Author Information
  1. Yayi He: Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.
  2. Xiaoshen Zhang: Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.
  3. Keyi Jia: Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.
  4. Rafal Dziadziuszko: Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland.
  5. Sha Zhao: Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.
  6. Juan Deng: Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.
  7. Hao Wang: Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.
  8. Fred R Hirsch: Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  9. Caicun Zhou: Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.

Abstract

BACKGROUND: Anti-tumoral immunotherapy of anti-program death-1/program death-ligand 1 (PD-1/PD-L1) immune checkpoint therapy demonstrated promising efficacy and tolerability in patients with lung cancer. Apart from inhibitory checkpoints, OX40, the co-stimulatory receptor related to T cell priming and proliferation, was valued identically. In this study, the relationship between OX40/OX40L expressed on tumor infiltrating lymphocytes (TILs), PD-1/PD-L1 and other immunological factors, as well as its role serving as the potential prognostic biomarker, were analyzed in NSCLC.
METHODS: We investigated the relationship between OX40/OX40L, PD-1/PD-L1 and TILs in surgical samples from 139 patients with NSCLC by immunohistochemistry (IHC). Factors related to OX40/OX40L expression were analyzed by logistic regression and multi-linear regression. Cox analysis was also performed to find the influencing factors. Survival analysis was conducted in order to testify its role in predicting patients' prognosis.
RESULTS: The TILs OX40, OX40L expression were negatively correlated with the PD-1/PD-L1 expression, respectively. PD-1 expression was negatively correlated with the TILs OX40 expression [R=0.250, (P=0.003)], it was also negatively correlated with the TILs OX40L expression [R=0.386, (P=0.0001)]. PD-1 expression was positively correlated with TILs grades and negatively correlated with the TILs OX40L expression in multiple linear model [R=0.531, (X1, 95% CI: 3.552-8.176, P=0.0001; X2, 95% CI: 0.216-0.683), (P=0.0001)]. The expression of TILs OX40 varied significantly among tumor OX40 and OX40L, PD-1, PD-L1, TILs and pathology types. Tumor OX40L expression, TILs OX40L expression, PD-1 expression, PD-L1 expression and TILs were considered as risk factors for TILs OX40 expression. The staging and TILs OX40L were considered as risk factors for overall survival (OS) while stage and gender were risk factors for recurrence-free survival (RFS). The low-expression of OX40 was related to longer RFS, OS and better prognosis.
CONCLUSIONS: OX40 plays a pivotal role in NSCLC, which was closely correlated with immunological factors, RFS and prognosis.

Keywords

References

  1. J Immunol. 2000 Mar 15;164(6):2955-63 [PMID: 10706682]
  2. Eur J Immunol. 2003 Apr;33(4):861-9 [PMID: 12672051]
  3. J Immunol. 2004 Apr 1;172(7):4253-9 [PMID: 15034038]
  4. Annu Rev Immunol. 2005;23:23-68 [PMID: 15771565]
  5. J Exp Med. 2005 Nov 7;202(9):1213-23 [PMID: 16275760]
  6. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3740-5 [PMID: 16501042]
  7. Cancer Sci. 2008 Feb;99(2):361-7 [PMID: 18201271]
  8. J Exp Med. 2008 Apr 14;205(4):825-39 [PMID: 18362171]
  9. J Immunol. 2008 Dec 15;181(12):8650-9 [PMID: 19050285]
  10. Nat Rev Immunol. 2009 Apr;9(4):271-85 [PMID: 19319144]
  11. J Exp Med. 2009 May 11;206(5):1103-16 [PMID: 19414558]
  12. Immunol Rev. 2009 May;229(1):173-91 [PMID: 19426222]
  13. J Immunol. 2009 Oct 15;183(8):4853-7 [PMID: 19786544]
  14. Annu Rev Immunol. 2010;28:57-78 [PMID: 20307208]
  15. Immunity. 2010 Sep 24;33(3):313-25 [PMID: 20870174]
  16. Am J Pathol. 2010 Dec;177(6):2912-20 [PMID: 20952591]
  17. Sci Transl Med. 2011 Mar 23;3(75):75ra26 [PMID: 21430269]
  18. J Immunol. 2011 Oct 1;187(7):3555-64 [PMID: 21880986]
  19. J Clin Invest. 2013 Jun;123(6):2447-63 [PMID: 23728179]
  20. Cancer Res. 2013 Dec 15;73(24):7189-7198 [PMID: 24177180]
  21. Clin Cancer Res. 2014 Mar 1;20(5):1067-73 [PMID: 24470514]
  22. Immunol Cell Biol. 2014 Jul;92(6):475-80 [PMID: 24732076]
  23. Nat Commun. 2014 Jun 24;5:4229 [PMID: 24957461]
  24. Nature. 2014 Nov 27;515(7528):563-7 [PMID: 25428504]
  25. J Clin Oncol. 2015 Jun 10;33(17):1974-82 [PMID: 25605845]
  26. Cancer Immunol Res. 2015 May;3(5):526-35 [PMID: 25627655]
  27. N Engl J Med. 2015 May 21;372(21):2018-28 [PMID: 25891174]
  28. J Clin Oncol. 2015 Jun 20;33(18):2004-12 [PMID: 25897158]
  29. Cancer Discov. 2015 Jul;5(7):713-22 [PMID: 25934077]
  30. Clin Cancer Res. 2015 May 15;21(10):2256-62 [PMID: 25979932]
  31. J Clin Oncol. 2015 Jul 1;33(19):2197-204 [PMID: 26014294]
  32. N Engl J Med. 2015 Jul 9;373(2):123-35 [PMID: 26028407]
  33. N Engl J Med. 2015 Oct 22;373(17):1627-39 [PMID: 26412456]
  34. Eur J Cancer. 2016 Jan;52:50-66 [PMID: 26645943]
  35. Lancet Oncol. 2016 Feb;17(2):212-223 [PMID: 26727163]
  36. Lancet. 2016 Apr 30;387(10030):1837-46 [PMID: 26970723]
  37. J Clin Oncol. 2016 Aug 20;34(24):2858-65 [PMID: 27022118]
  38. Clin Cancer Res. 2016 Aug 15;22(16):4236-48 [PMID: 27034329]
  39. Lancet Oncol. 2016 Jun;17(6):822-835 [PMID: 27132212]
  40. Cytokine. 2016 Aug;84:10-6 [PMID: 27203665]
  41. J Thorac Oncol. 2016 Jul;11(7):946-63 [PMID: 27229180]
  42. Nat Commun. 2016 Aug 05;7:12368 [PMID: 27492902]
  43. Lancet. 2017 Jan 21;389(10066):299-311 [PMID: 27574741]
  44. Sci Rep. 2016 Nov 22;6:37558 [PMID: 27874054]
  45. N Engl J Med. 2017 Feb 16;376(7):629-640 [PMID: 27959700]
  46. Immunotherapy. 2017 Jan;9(1):71-82 [PMID: 28000531]
  47. J Immunol. 2017 Feb 15;198(4):1729-1739 [PMID: 28053236]
  48. Mol Immunol. 2017 Mar;83:13-22 [PMID: 28092803]
  49. J Thorac Oncol. 2017 May;12(5):814-823 [PMID: 28132868]
  50. N Engl J Med. 2017 Aug 31;377(9):829-838 [PMID: 28586279]
  51. Cancer Immunol Res. 2017 Sep;5(9):755-766 [PMID: 28848055]
  52. Clin Cancer Res. 2017 Oct 15;23(20):6165-6177 [PMID: 28855348]
  53. Cancer Immunol Immunother. 2018 Jan;67(1):47-60 [PMID: 28905118]
  54. Nat Commun. 2017 Sep 19;8(1):606 [PMID: 28928458]
  55. J Clin Oncol. 2017 Dec 20;35(36):4027-4034 [PMID: 28968167]
  56. Neuro Oncol. 2018 Jan 10;20(1):44-54 [PMID: 29016879]
  57. Neuro Oncol. 2018 Jan 10;20(1):4-5 [PMID: 29092058]
  58. Oncoimmunology. 2017 Aug 17;6(12):e1361594 [PMID: 29209565]
  59. CA Cancer J Clin. 2018 Jan;68(1):7-30 [PMID: 29313949]
  60. Sci Transl Med. 2018 Jan 31;10(426): [PMID: 29386357]
  61. Cancer Cell. 2018 Mar 12;33(3):463-479.e10 [PMID: 29455927]
  62. J Thorac Oncol. 2018 Jun;13(6):779-791 [PMID: 29526824]
  63. J Surg Oncol. 2018 Apr;117(5):840-844 [PMID: 29529339]
  64. Science. 2018 Mar 23;359(6382):1344-1345 [PMID: 29567702]
  65. Cancer Lett. 2018 Jul 1;425:174-182 [PMID: 29574275]
  66. Oncoimmunology. 2018 Mar 6;7(4):e1404214 [PMID: 29632718]
  67. BMC Cancer. 2018 Apr 16;18(1):425 [PMID: 29661166]
  68. Clin Cancer Res. 2018 Nov 15;24(22):5735-5743 [PMID: 29784675]
  69. Immunity. 2018 Jun 19;48(6):1067-1069 [PMID: 29924969]
  70. EBioMedicine. 2018 Jul;33:94-104 [PMID: 29936139]
  71. Cell Rep. 2018 Jul 17;24(3):607-618 [PMID: 30021159]
  72. Cell Immunol. 2018 Dec;334:38-41 [PMID: 30213644]
  73. Oncoimmunology. 2018 Jun 11;7(8):e1465164 [PMID: 30221061]
  74. Oncoimmunology. 2018 Jul 30;7(10):e1494111 [PMID: 30288361]
  75. Sci Rep. 2018 Oct 8;8(1):14940 [PMID: 30297856]
  76. Neoplasia. 2018 Nov;20(11):1150-1160 [PMID: 30300827]
  77. Science. 2018 Oct 12;362(6411): [PMID: 30309915]
  78. JCI Insight. 2018 Oct 18;3(20): [PMID: 30333318]
  79. J Neurooncol. 2019 Jan;141(1):95-102 [PMID: 30353265]
  80. JCI Insight. 2018 Nov 2;3(21): [PMID: 30385732]
  81. Ann Oncol. 2019 Jan 1;30(1):44-56 [PMID: 30395155]
  82. Head Neck. 2019 May;41(5):1237-1245 [PMID: 30548478]

Word Cloud

Created with Highcharts 10.0.0expressionTILsOX40OX40LfactorscorrelatedPD-1PD-1/PD-L1roleNSCLCnegativelyP=0lungcancerrelatedcellOX40/OX40Ltumorprognosis[R=0]0001PD-L1riskRFSdeath-ligand1immunepatientsrelationshipinfiltratinglymphocytesimmunologicalanalyzedregressionanalysisalso95%CI:consideredsurvivalOSnon-smallprogramBACKGROUND:Anti-tumoralimmunotherapyanti-programdeath-1/programcheckpointtherapydemonstratedpromisingefficacytolerabilityApartinhibitorycheckpointsco-stimulatoryreceptorTprimingproliferationvaluedidenticallystudyexpressedwellservingpotentialprognosticbiomarkerMETHODS:investigatedsurgicalsamples139immunohistochemistryIHCFactorslogisticmulti-linearCoxperformedfindinfluencingSurvivalconductedordertestifypredictingpatients'RESULTS:respectively250003386positivelygradesmultiplelinearmodel531X13552-8176X20216-0683variedsignificantlyamongpathologytypesTumorstagingoverallstagegenderrecurrence-freelow-expressionlongerbetterCONCLUSIONS:playspivotalcloselyproteinclinicaloutcomerelationshipsbiomarkersCD134death-1

Similar Articles

Cited By