Multiplexed ultrasound beam summation for side lobe reduction.

Asaf Ilovitsh, Tali Ilovitsh, Katherine W Ferrara
Author Information
  1. Asaf Ilovitsh: Department of Radiology, Stanford University, Palo Alto, CA, USA.
  2. Tali Ilovitsh: Department of Radiology, Stanford University, Palo Alto, CA, USA. ORCID
  3. Katherine W Ferrara: Department of Radiology, Stanford University, Palo Alto, CA, USA. kwferrar@stanford.edu. ORCID

Abstract

Two-way focusing, which relies on sweeping a focused beam across a field of view, is the conventional method for performing high-quality ultrasound imaging. Side lobes resulting from diffraction reduce the image contrast, thus degrade the image quality. In this paper, we present a new method for beam shaping the transmitted ultrasound waveform in order to reduce side lobes and improve image quality. The beam shaping is achieved by transmitting two different waveforms that are interlaced between the odd and even elements. One waveform generates a standard diffraction-limited single focus, and the second waveform generates two foci at the same focal depth as the single focus. The distance between the two foci is selected such that they will destructively interfere with the first order side lobes of the single focus, effectively eliminating these side lobes. A 7.5 dB side lobe reduction was measured experimentally at a depth of 60 mm, using a phased array transducer with a center frequency of 3 MHz. This real-time method utilizes standard receive beamforming, identical to traditional two-way focusing, and does not require post-processing. The method can be implemented with conventional ultrasound systems, without the need for additional components. The proposed method is described analytically, optimized via numerical simulation, and validated by experiments using wire targets, tissue-mimicking phantoms, and in vivo imaging of the rat bladder.

References

  1. IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jan;53(1):224-36 [PMID: 16471449]
  2. Ultrason Imaging. 1996 Apr;18(2):77-105 [PMID: 8813029]
  3. IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Nov;50(11):1548-57 [PMID: 14682638]
  4. IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):273-284 [PMID: 30530361]
  5. Biomed Res Int. 2017;2017:6027029 [PMID: 28459067]
  6. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(3):541-58 [PMID: 18244206]
  7. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2187-97 [PMID: 19942506]
  8. Radiology. 1982 Aug;144(3):631-2 [PMID: 7100482]
  9. Ultrasonics. 1985 Sep;23(5):199-205 [PMID: 4060332]
  10. Commun Biol. 2018;1:3 [PMID: 29888748]
  11. Ultrasound Med Biol. 2010 Jun;36(6):861-73 [PMID: 20510184]
  12. Appl Spectrosc. 2011 Sep;65(9):967-80 [PMID: 21929850]
  13. IEEE Trans Ultrason Ferroelectr Freq Control. 2015 May;62(5):852-61 [PMID: 25965679]
  14. IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jul;64(7):1045-1049 [PMID: 28410103]
  15. Opt Lett. 1999 Jul 15;24(14):954-6 [PMID: 18073907]
  16. Opt Lett. 1994 Jun 1;19(11):780-2 [PMID: 19844443]
  17. Vet Radiol Ultrasound. 1997 Sep-Oct;38(5):387-93 [PMID: 9335099]
  18. Ultrasound Med Biol. 1999 Mar;25(3):431-41 [PMID: 10374986]
  19. IEEE Trans Ultrason Ferroelectr Freq Control. 1989;36(5):540-8 [PMID: 18290231]
  20. Ultrasound Med Biol. 1979;5(2):187-93 [PMID: 505618]
  21. IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Aug;54(8):1606-13 [PMID: 17703664]
  22. IEEE Trans Med Imaging. 2015 Apr;34(4):940-9 [PMID: 25420256]
  23. Radiology. 1982 Dec;145(3):763-8 [PMID: 7146410]
  24. Ultrasound Med Biol. 2018 Aug;44(8):1882-1890 [PMID: 29880249]
  25. J Acoust Soc Am. 2018 Aug;144(2):861 [PMID: 30180703]
  26. IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Mar;55(3):619-28 [PMID: 18407851]
  27. Science. 1981 Dec 4;214(4525):1141-3 [PMID: 7302585]
  28. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7 [PMID: 18263145]
  29. Sci Rep. 2018 Apr 10;8(1):5759 [PMID: 29636513]

Grants

  1. R01 CA112356/NCI NIH HHS
  2. R01 CA210553/NCI NIH HHS
  3. R01 CA211602/NCI NIH HHS
  4. R01 CA199658/NCI NIH HHS
  5. R01 CA134659/NCI NIH HHS

MeSH Term

Animals
Image Enhancement
Phantoms, Imaging
Rats
Ultrasonography
Urinary Bladder

Word Cloud

Created with Highcharts 10.0.0methodsidebeamultrasoundlobesimagewaveformtwosinglefocusfocusingconventionalimagingreducequalityshapingordergeneratesstandardfocidepthlobereductionusingTwo-wayreliessweepingfocusedacrossfieldviewperforminghigh-qualitySideresultingdiffractioncontrastthusdegradepaperpresentnewtransmittedimproveachievedtransmittingdifferentwaveformsinterlacedoddevenelementsOnediffraction-limitedsecondfocaldistanceselectedwilldestructivelyinterferefirsteffectivelyeliminating75 dBmeasuredexperimentally60 mmphasedarraytransducercenterfrequency3 MHzreal-timeutilizesreceivebeamformingidenticaltraditionaltwo-wayrequirepost-processingcanimplementedsystemswithoutneedadditionalcomponentsproposeddescribedanalyticallyoptimizedvianumericalsimulationvalidatedexperimentswiretargetstissue-mimickingphantomsvivoratbladderMultiplexedsummation

Similar Articles

Cited By (4)