Deep learning powers a motion-tracking revolution.

Roberta Kwok
Author Information

Abstract

No abstract text available.

Keywords

References

  1. Di Santo, V., Blevins, E. L. & Lauder, G. V. J. Exp. Biol. 220, 705–712 (2017). [PMID: 27965272]
  2. Zhang, W. & Yartsev, M. M. Cell 178, 413–428 (2019). [PMID: 31230710]
  3. Graving, J. M. et al. eLife https://doi.org/10.7554/eLife.47994 (2019). [DOI: 10.7554/eLife.47994]
  4. Mathis, A., Yüksekgönül, M., Rogers, B., Bethge, M., & Mathis, M. W. Preprint at https://arxiv.org/abs/1909.11229 (2019).
  5. Heras, F. J. H., Romero-Ferrero, F., Hinz, R. C. & de Polavieja, G. G. PLoS Comput. Biol. 15, e1007354 (2019). [PMID: 31518357]

MeSH Term

Algorithms
Animals
Behavior, Animal
Deep Learning
Humans
Mice
Movement
Open Access Publishing
Posture
Software

Word Cloud

Created with Highcharts 10.0.0biologyDeeplearningpowersmotion-trackingrevolutionAnimalbehaviourComputationalbioinformaticsConservationEcology

Similar Articles

Cited By