A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of to Adverse Environments.

Xiaotao Bai, Jianmei Xu, Xuemin Shao, Wenchun Luo, Zhimin Niu, Chengyu Gao, Dongshi Wan
Author Information
  1. Xiaotao Bai: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  2. Jianmei Xu: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  3. Xuemin Shao: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  4. Wenchun Luo: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  5. Zhimin Niu: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  6. Chengyu Gao: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  7. Dongshi Wan: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.

Abstract

Novel genes provide important genetic resource for organism innovation. However, the evidence from genetic experiment is limited. In plants, γ-aminobutyric acid (GABA) transporters (GATs) primarily transport GABA and further involve in plant growth, development, and response to various stresses. In this study, we have identified the family in species and characterized their functional evolution and divergence in a desert poplar species (). We found that the underwent genus-specific expansion multiple whole-genome duplications in species. The purifying selection were identified across those evolution and divergence in poplar diversity, except two paralogous and from . The both genes arose from a tandem duplication event about 49 million years ago and have experienced strong positive selection, suggesting that the divergence in PeuGAT3 protein function/structure might define gene function better than in expression pattern. Both genes were functionally characterized in and poplar, respectively. The overexpression of increased the thickness of xylem cells walls in both and poplar and enhanced the lignin content of xylem tissues and the proline accumulation in poplar leaves, all of which may improve tolerance of salt/drought stress in desert poplars. Our findings help clarify the genetic mechanisms underpinning high tolerance in desert poplars and suggest that could be an attractive candidate gene for engineering trees with improved brown-rot resistance.

Keywords

References

  1. Nature. 2007 Oct 11;449(7163):677-81 [PMID: 17928853]
  2. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D192-6 [PMID: 15608175]
  3. Mol Biol Evol. 2006 May;23(5):1056-67 [PMID: 16500928]
  4. Mol Biol Evol. 2017 Dec 1;34(12):3299-3302 [PMID: 29029172]
  5. J Exp Biol. 2005 Aug;208(Pt 15):2819-30 [PMID: 16043587]
  6. Arabidopsis Book. 2010;8:e0131 [PMID: 22303257]
  7. Biochim Biophys Acta. 2000 May 1;1465(1-2):275-80 [PMID: 10748260]
  8. BMC Evol Biol. 2008 Nov 04;8:307 [PMID: 18983655]
  9. Plant J. 1998 Dec;16(6):735-43 [PMID: 10069079]
  10. Amino Acids. 2010 Oct;39(4):949-62 [PMID: 20204435]
  11. Science. 1985 Mar 8;227(4691):1229-31 [PMID: 17757866]
  12. Plant Cell Environ. 2008 May;31(5):632-45 [PMID: 18088335]
  13. Nat Genet. 2007 Oct;39(10):1256-60 [PMID: 17828263]
  14. Genes (Basel). 2015 Sep 18;6(3):901-17 [PMID: 26393655]
  15. Trends Plant Sci. 2014 Nov;19(11):698-708 [PMID: 25151064]
  16. Genetics. 2001 Dec;159(4):1789-804 [PMID: 11779815]
  17. Plant Physiol. 2005 Jan;137(1):117-26 [PMID: 15618414]
  18. Genetics. 2014 Feb;196(2):481-96 [PMID: 24336749]
  19. Nat Commun. 2013;4:2797 [PMID: 24256998]
  20. Curr Opin Plant Biol. 2012 Jun;15(3):315-21 [PMID: 22366488]
  21. Mol Biol Evol. 2014 Apr;31(4):872-88 [PMID: 24425782]
  22. Plant J. 2006 Feb;45(4):523-39 [PMID: 16441347]
  23. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73 [PMID: 16845028]
  24. Genetics. 1999 Apr;151(4):1531-45 [PMID: 10101175]
  25. Nat Rev Genet. 2011 Aug 31;12(10):692-702 [PMID: 21878963]
  26. J Proteomics. 2013 Apr 9;81:112-25 [PMID: 23063722]
  27. Trends Plant Sci. 2010 Feb;15(2):89-97 [PMID: 20036181]
  28. Genome Biol. 2002;3(2):RESEARCH0008 [PMID: 11864370]
  29. Cell Death Dis. 2017 Aug 3;8(8):e2965 [PMID: 28771231]
  30. Trends Biochem Sci. 2002 Mar;27(3):139-47 [PMID: 11893511]
  31. Plant Physiol. 2005 Dec;139(4):1762-72 [PMID: 16299175]
  32. Plant Cell. 2005 Jul;17(7):1866-75 [PMID: 15987996]
  33. Trends Plant Sci. 2004 Mar;9(3):110-5 [PMID: 15003233]
  34. PLoS Biol. 2012;10(12):e1001446 [PMID: 23239941]
  35. Mol Plant. 2011 May;4(3):453-63 [PMID: 21324969]
  36. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  37. Genetics. 2005 Feb;169(2):1157-64 [PMID: 15654095]
  38. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  39. Trends Plant Sci. 2002 May;7(5):193-5 [PMID: 11992820]
  40. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  41. Genes (Basel). 2016 Dec 01;7(12): [PMID: 27916935]
  42. Nucleic Acids Res. 2009 Jan;37(Database issue):D274-8 [PMID: 19022853]
  43. Plant Biotechnol J. 2019 Feb;17(2):451-460 [PMID: 30044051]
  44. Cell Res. 2014 Oct;24(10):1274-7 [PMID: 24980958]
  45. Gene. 1999 Sep 30;238(1):135-41 [PMID: 10570991]
  46. Plant Cell. 2017 Feb;29(2):395-408 [PMID: 28123105]
  47. Trends Plant Sci. 1999 Nov;4(11):446-452 [PMID: 10529826]
  48. Science. 1993 Apr 2;260(5104):91-5 [PMID: 7682012]
  49. Plant Cell. 1999 Mar;11(3):377-92 [PMID: 10072398]
  50. Mol Biol Evol. 2000 Oct;17(10):1483-98 [PMID: 11018155]
  51. Front Plant Sci. 2015 Sep 29;6:785 [PMID: 26483804]

Word Cloud

Similar Articles

Cited By