Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism.

William N Beavers, Andrew J Monteith, Venkataraman Amarnath, Raymond L Mernaugh, L Jackson Roberts, Walter J Chazin, Sean S Davies, Eric P Skaar
Author Information
  1. William N Beavers: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
  2. Andrew J Monteith: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
  3. Venkataraman Amarnath: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
  4. Raymond L Mernaugh: Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
  5. L Jackson Roberts: Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
  6. Walter J Chazin: Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
  7. Sean S Davies: Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA. ORCID
  8. Eric P Skaar: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA eric.skaar@vumc.org.

Abstract

infects every niche of the human host. In response to microbial infection, vertebrates have an arsenal of antimicrobial compounds that inhibit bacterial growth or kill bacterial cells. One class of antimicrobial compounds consists of polyunsaturated fatty acids, which are highly abundant in eukaryotes and encountered by at the host-pathogen interface. Arachidonic acid (AA) is one of the most abundant polyunsaturated fatty acids in vertebrates and is released in large amounts during the oxidative burst. Most of the released AA is converted to bioactive signaling molecules, but, independently of its role in inflammatory signaling, AA is toxic to Here, we report that AA kills through a lipid peroxidation mechanism whereby AA is oxidized to reactive electrophiles that modify macromolecules, eliciting toxicity. This process is rescued by cotreatment with antioxidants as well as in a strain genetically inactivated for (USA300 mutant) that produces lower levels of reactive oxygen species. However, resistance to AA stress in the USA300 mutant comes at a cost, making the mutant more susceptible to β-lactam antibiotics and attenuated for pathogenesis in a murine infection model compared to the parental methicillin-resistant (MRSA) strain, indicating that resistance to AA toxicity increases susceptibility to other stressors encountered during infection. This report defines the mechanism by which AA is toxic to and identifies lipid peroxidation as a pathway that can be modulated for the development of future therapeutics to treat infections. Despite the ability of the human immune system to generate a plethora of molecules to control infections, is among the pathogens with the greatest impact on human health. One class of host molecules toxic to consists of polyunsaturated fatty acids. Here, we investigated the antibacterial properties of arachidonic acid, one of the most abundant polyunsaturated fatty acids in humans, and discovered that the mechanism of toxicity against proceeds through lipid peroxidation. A better understanding of the molecular mechanisms by which the immune system kills , and by which avoids host killing, will enable the optimal design of therapeutics that complement the ability of the vertebrate immune response to eliminate infections.

Keywords

References

  1. Nat Chem Biol. 2017 Apr;13(4):396-401 [PMID: 28166208]
  2. J Biol Chem. 2018 Jun 15;293(24):9176-9187 [PMID: 29712723]
  3. Biochemistry. 2006 Dec 12;45(49):14795-808 [PMID: 17144673]
  4. Nature. 1983 Oct 20-26;305(5936):709-12 [PMID: 6226876]
  5. MBio. 2013 Feb 12;4(1):e00537-12 [PMID: 23404398]
  6. ACS Chem Biol. 2011 Jan 21;6(1):106-16 [PMID: 20961110]
  7. Chem Res Toxicol. 1999 Dec;12(12):1195-204 [PMID: 10604869]
  8. J Am Chem Soc. 2014 Aug 13;136(32):11529-39 [PMID: 25034362]
  9. Microbiology. 2019 Feb;165(2):197-207 [PMID: 30566075]
  10. Int J Food Microbiol. 2007 Jan 25;113(2):233-6 [PMID: 16860896]
  11. Clin Microbiol Rev. 2015 Jul;28(3):603-61 [PMID: 26016486]
  12. Cell Host Microbe. 2011 Aug 18;10(2):158-64 [PMID: 21843872]
  13. Chem Rev. 2003 Jun;103(6):2239-304 [PMID: 12797830]
  14. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2040-3 [PMID: 273929]
  15. J Bacteriol. 2013 Oct;195(20):4650-9 [PMID: 23935043]
  16. J Biol Chem. 1986 Sep 15;261(26):12114-9 [PMID: 3745181]
  17. Chem Rev. 2011 Oct 12;111(10):5944-72 [PMID: 21861450]
  18. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3841-6 [PMID: 23431180]
  19. J Biol Chem. 1999 May 7;274(19):13139-46 [PMID: 10224068]
  20. J Infect Dis. 1986 Jul;154(1):84-94 [PMID: 3086465]
  21. J Clin Microbiol. 2006 Jan;44(1):108-18 [PMID: 16390957]
  22. J Bacteriol. 2009 Jul;191(13):4482-4 [PMID: 19429623]
  23. Cancer Metastasis Rev. 2011 Dec;30(3-4):277-94 [PMID: 22002716]
  24. Science. 1983 May 6;220(4597):568-75 [PMID: 6301011]
  25. J Biol Chem. 2015 Jul 31;290(31):18991-8 [PMID: 26055713]
  26. Anal Biochem. 1978 Jul 15;88(1):203-11 [PMID: 696996]
  27. Front Physiol. 2018 Nov 28;9:1658 [PMID: 30546315]
  28. Microbes Infect. 2015 Jan;17(1):77-82 [PMID: 25284682]
  29. Infect Immun. 2008 May;76(5):2169-76 [PMID: 18347049]
  30. Mar Drugs. 2013 Nov 13;11(11):4544-57 [PMID: 24232668]
  31. Biochemistry. 2006 Dec 26;45(51):15756-67 [PMID: 17176098]
  32. J Biol Chem. 1981 Jul 25;256(14):7228-34 [PMID: 6788763]
  33. Cell. 1992 Jul 24;70(2):267-81 [PMID: 1638631]
  34. Ann Intern Med. 2006 Mar 7;144(5):318-25 [PMID: 16520472]
  35. J Bacteriol. 2015 Jun;197(11):1893-905 [PMID: 25802299]
  36. Infect Immun. 2015 Feb;83(2):514-21 [PMID: 25404025]
  37. ACS Chem Biol. 2017 Aug 18;12(8):2062-2069 [PMID: 28613820]
  38. Prostaglandins Other Lipid Mediat. 2018 Nov;139:29-35 [PMID: 30296489]
  39. Front Microbiol. 2018 May 11;9:813 [PMID: 29867785]
  40. MBio. 2019 Feb 5;10(1): [PMID: 30723122]
  41. Free Radic Biol Med. 2004 May 1;36(9):1163-74 [PMID: 15082070]
  42. Front Cell Infect Microbiol. 2013 Dec 05;3:91 [PMID: 24367765]
  43. Pathog Dis. 2016 Aug;74(6): [PMID: 27354296]
  44. J Immunol Methods. 1980;36(2):109-17 [PMID: 7430646]
  45. Antioxid Redox Signal. 2015 Jun 20;22(18):1703-18 [PMID: 25557218]
  46. Chem Res Toxicol. 2015 Jul 20;28(7):1469-75 [PMID: 26046387]
  47. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9383-7 [PMID: 2123555]
  48. Plasmid. 2006 Jan;55(1):58-63 [PMID: 16051359]

Grants

  1. R01 AI069233/NIAID NIH HHS
  2. T32 AI007474/NIAID NIH HHS
  3. P30 DK058404/NIDDK NIH HHS
  4. G20 RR030956/NCRR NIH HHS
  5. P30 EY008126/NEI NIH HHS
  6. R01 AI073843/NIAID NIH HHS
  7. T32 HL069765/NHLBI NIH HHS
  8. P30 CA068485/NCI NIH HHS
  9. F32 HL144081/NHLBI NIH HHS
  10. UL1 RR024975/NCRR NIH HHS

MeSH Term

Animals
Anti-Bacterial Agents
Arachidonic Acid
Brain
Dose-Response Relationship, Drug
Drug Resistance, Bacterial
Female
Kidney
Lipid Peroxidation
Lipids
Mice
Mice, Inbred BALB C
Microbial Sensitivity Tests
Mutation
Neutrophils
Oxidative Stress
Reactive Oxygen Species
Spleen
Staphylococcal Infections
Staphylococcus aureus
Teichoic Acids

Chemicals

Anti-Bacterial Agents
Lipids
Reactive Oxygen Species
Teichoic Acids
isolevuglandin
Arachidonic Acid

Word Cloud

Created with Highcharts 10.0.0AAacidspolyunsaturatedfattyhumanhostinfectionabundantacidmoleculestoxiclipidperoxidationmechanismtoxicitymutantinfectionsimmuneresponsevertebratesantimicrobialcompoundsbacterialOneclassconsistsencounteredArachidoniconereleasedsignalingreportkillsreactivestrainUSA300resistancepathogenesisMRSAtherapeuticsabilitysystemarachidonicStaphylococcusaureusinfectseverynichemicrobialarsenalinhibitgrowthkillcellshighlyeukaryoteshost-pathogeninterfacelargeamountsoxidativeburstconvertedbioactiveindependentlyroleinflammatorywherebyoxidizedelectrophilesmodifymacromoleculeselicitingprocessrescuedcotreatmentantioxidantswellgeneticallyinactivatedproduceslowerlevelsoxygenspeciesHoweverstresscomescostmakingsusceptibleβ-lactamantibioticsattenuatedmurinemodelcomparedparentalmethicillin-resistantindicatingincreasessusceptibilitystressorsdefinesidentifiespathwaycanmodulateddevelopmentfuturetreatDespitegenerateplethoracontrolamongpathogensgreatestimpacthealthinvestigatedantibacterialpropertieshumansdiscoveredproceedsbetterunderstandingmolecularmechanismsavoidskillingwillenableoptimaldesigncomplementvertebrateeliminateAcidKillsLipidPeroxidationMechanismisolevuglandinswallteichoic

Similar Articles

Cited By