Conformational Flexibility of the Protein-Protein Interfaces of the Ebola Virus VP40 Structural Matrix Filament.

Elumalai Pavadai, Nisha Bhattarai, Prabin Baral, Robert V Stahelin, Prem P Chapagain, Bernard S Gerstman
Author Information
  1. Robert V Stahelin: Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Cancer Center , Purdue University , West Lafayette , Indiana 47907 , United States.

Abstract

The Ebola virus (EBOV) is a virulent pathogen that causes severe hemorrhagic fever with a high fatality rate in humans. The EBOV transformer protein VP40 plays crucial roles in viral assembly and budding at the plasma membrane of infected cells. One of VP40's roles is to form the long, flexible, pleomorphic filamentous structural matrix for the virus. Each filament contains three unique interfaces: monomer NTD-NTD to form a dimer, dimer-to-dimer NTD-NTD oligomerization to form a hexamer, and end-to-end hexamer CTD-CTD to build the filament. However, the atomic-level details of conformational flexibility of the VP40 filament are still elusive. In this study, we have performed explicit-solvent, all-atom molecular dynamic simulations to explore the conformational flexibility of the three different interface structures of the filament. Using dynamic network analysis and other calculational methods, we find that the CTD-CTD hexamer interface with weak interdomain amino acid communities is the most flexible, and the NTD-NTD oligomer interface with strong interdomain communities is the least flexible. Our study suggests that the high flexibility of the CTD-CTD interface may be essential for the supple bending of the Ebola filovirus, and such flexibility may present a target for molecular interventions to disrupt the Ebola virus functioning.

References

  1. Structure. 2003 Apr;11(4):423-33 [PMID: 12679020]
  2. J Mol Biol. 1993 Dec 5;234(3):779-815 [PMID: 8254673]
  3. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6 [PMID: 12060727]
  4. Protein Sci. 2014 Nov;23(11):1519-27 [PMID: 25159197]
  5. J Phys Chem B. 2015 Oct 8;119(40):12750-9 [PMID: 26374226]
  6. J Biomol Struct Dyn. 2018 Mar;36(4):981-992 [PMID: 28279118]
  7. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13871-6 [PMID: 11095724]
  8. Bioinformatics. 2012 Nov 15;28(22):3000-1 [PMID: 22982572]
  9. N Engl J Med. 2014 Oct 16;371(16):1481-95 [PMID: 25244186]
  10. PLoS One. 2018 Jun 20;13(6):e0199225 [PMID: 29924847]
  11. J Phys Chem B. 2014 May 15;118(19):5101-8 [PMID: 24758259]
  12. Arch Virol Suppl. 2008;20:13-360 [PMID: 18637412]
  13. BMC Bioinformatics. 2014 Dec 10;15:399 [PMID: 25491031]
  14. J Comput Chem. 2006 Nov 15;27(14):1765-8 [PMID: 16917862]
  15. J Am Chem Soc. 2012 Jul 18;134(28):11559-72 [PMID: 22731813]
  16. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  17. Chem Biol Drug Des. 2018 Mar;91(3):828-840 [PMID: 29139214]
  18. Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6620-5 [PMID: 19351898]
  19. J Infect Dis. 1999 Feb;179 Suppl 1:S1-7 [PMID: 9988155]
  20. Trends Microbiol. 2013 Nov;21(11):583-93 [PMID: 24011860]
  21. Future Virol. 2015 May;10(5):537-546 [PMID: 26120351]
  22. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4623-31 [PMID: 25319261]
  23. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  24. Bioinformatics. 2006 Nov 1;22(21):2695-6 [PMID: 16940322]
  25. Sci Rep. 2018 Jun 27;8(1):9776 [PMID: 29950600]
  26. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  27. Phys Rev Lett. 1996 Aug 26;77(9):1905-1908 [PMID: 10063201]
  28. Expert Opin Ther Targets. 2014 Feb;18(2):115-20 [PMID: 24283270]
  29. Cell. 2013 Aug 15;154(4):763-74 [PMID: 23953110]
  30. EMBO J. 2000 Aug 15;19(16):4228-36 [PMID: 10944105]
  31. mBio. 2015 Feb 19;6(2):e00137 [PMID: 25698835]
  32. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15936-41 [PMID: 14673115]
  33. Curr Opin Struct Biol. 2018 Feb;48:40-48 [PMID: 29080468]
  34. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4275-80 [PMID: 22371572]
  35. Channels (Austin). 2017 May 4;11(3):209-223 [PMID: 27753526]
  36. Trends Mol Med. 2006 May;12(5):206-15 [PMID: 16616875]
  37. J Comput Chem. 2013 Sep 30;34(25):2135-45 [PMID: 23832629]
  38. PLoS One. 2012;7(1):e29608 [PMID: 22247782]
  39. RSC Adv. 2017 Apr 26;7(37):22741-22748 [PMID: 28580138]
  40. J Biomol Struct Dyn. 2017 Jul;35(9):2040-2048 [PMID: 27367058]

Grants

  1. R01 AI081077/NIAID NIH HHS

MeSH Term

Cell Membrane
Humans
Molecular Dynamics Simulation
Nucleoproteins
Protein Conformation
Protein Interaction Domains and Motifs
Protein Multimerization
Viral Core Proteins

Chemicals

Nucleoproteins
Viral Core Proteins
nucleoprotein VP40, Ebola virus

Word Cloud

Created with Highcharts 10.0.0EbolafilamentflexibilityinterfacevirusVP40formflexibleNTD-NTDhexamerCTD-CTDEBOVhighrolesthreeconformationalstudymoleculardynamicinterdomaincommunitiesmayvirulentpathogencausesseverehemorrhagicfeverfatalityratehumanstransformerproteinplayscrucialviralassemblybuddingplasmamembraneinfectedcellsOneVP40'slongpleomorphicfilamentousstructuralmatrixcontainsuniqueinterfaces:monomerdimerdimer-to-dimeroligomerizationend-to-endbuildHoweveratomic-leveldetailsstillelusiveperformedexplicit-solventall-atomsimulationsexploredifferentstructuresUsingnetworkanalysiscalculationalmethodsfindweakaminoacidoligomerstrongleastsuggestsessentialsupplebendingfiloviruspresenttargetinterventionsdisruptfunctioningConformationalFlexibilityProtein-ProteinInterfacesVirusStructuralMatrixFilament

Similar Articles

Cited By