High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers.

Claire Valotteau, Fidan Sumbul, Felix Rico
Author Information
  1. Claire Valotteau: Aix-Marseille Univ, INSERM, CNRS, LAI, 13009, Marseille, France.
  2. Fidan Sumbul: Aix-Marseille Univ, INSERM, CNRS, LAI, 13009, Marseille, France.
  3. Felix Rico: Aix-Marseille Univ, INSERM, CNRS, LAI, 13009, Marseille, France. felix.rico@inserm.fr. ORCID

Abstract

Complete understanding of the role of mechanical forces in biological processes requires knowledge of the mechanical properties of individual proteins and living cells. Moreover, the dynamic response of biological systems at the nano- and microscales span over several orders of magnitude in time, from sub-microseconds to several minutes. Thus, access to force measurements over a wide range of length and time scales is required. High-speed atomic force microscopy (HS-AFM) using ultrashort cantilevers has emerged as a tool to study the dynamics of biomolecules and cells at video rates. The adaptation of HS-AFM to perform high-speed force spectroscopy (HS-FS) allows probing protein unfolding and receptor/ligand unbinding up to the velocity of molecular dynamics (MD) simulations with sub-microsecond time resolution. Moreover, application of HS-FS on living cells allows probing the viscoelastic response at short time scales providing deep understanding of cytoskeleton dynamics. In this mini-review, we assess the principles and recent developments and applications of HS-FS using ultrashort cantilevers to probe molecular and cellular mechanics.

Keywords

References

  1. Eur Phys J E Soft Matter. 2002 Dec;9(5):435-41 [PMID: 15011090]
  2. Ultramicroscopy. 2006 Jun-Jul;106(8-9):881-7 [PMID: 16730410]
  3. Nat Struct Biol. 2000 Aug;7(8):644-7 [PMID: 10932247]
  4. Nat Commun. 2019 Mar 8;10(1):1143 [PMID: 30850601]
  5. Phys Biol. 2009 Jul 01;6(2):025009 [PMID: 19571363]
  6. Nat Methods. 2014 Nov;11(11):1127-1130 [PMID: 25194847]
  7. Nat Nanotechnol. 2018 Aug;13(8):696-701 [PMID: 29784964]
  8. ACS Nano. 2014 May 27;8(5):4984-95 [PMID: 24670198]
  9. Science. 2013 Nov 8;342(6159):741-3 [PMID: 24202172]
  10. Biophys J. 2004 May;86(5):3186-93 [PMID: 15111431]
  11. Nat Nanotechnol. 2010 Mar;5(3):208-12 [PMID: 20154686]
  12. Rev Sci Instrum. 2014 Jul;85(7):073703 [PMID: 25085142]
  13. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477-81 [PMID: 8622961]
  14. Sci Rep. 2013;3:2131 [PMID: 23823461]
  15. Methods Enzymol. 2017;582:321-351 [PMID: 28062041]
  16. Chem Rev. 2014 Mar 26;114(6):3120-88 [PMID: 24476364]
  17. Science. 1992 Sep 25;257(5078):1900-5 [PMID: 1411505]
  18. Nat Commun. 2013;4:2155 [PMID: 23857417]
  19. Science. 1994 Oct 14;266(5183):257-9 [PMID: 7939660]
  20. ACS Nano. 2016 Feb 23;10(2):2584-90 [PMID: 26859708]
  21. Nano Lett. 2015 Oct 14;15(10):7091-8 [PMID: 26421945]
  22. Rev Sci Instrum. 2016 Sep;87(9):093711 [PMID: 27782587]
  23. Biophys J. 1997 Apr;72(4):1541-55 [PMID: 9083660]
  24. Rev Sci Instrum. 2013 Jul;84(7):073706 [PMID: 23902075]
  25. Science. 2018 Mar 30;359(6383):1527-1533 [PMID: 29599244]
  26. Sci Rep. 2017 Jul 11;7(1):5117 [PMID: 28698636]
  27. ACS Nano. 2018 Mar 27;12(3):2719-2727 [PMID: 29390177]
  28. J Struct Biol. 2017 Jan;197(1):13-25 [PMID: 26804584]
  29. Biophys Rev. 2018 Apr;10(2):285-292 [PMID: 29256119]
  30. Science. 2016 Apr 8;352(6282):239-42 [PMID: 27124461]
  31. Sci Rep. 2015 Mar 04;5:8724 [PMID: 25735540]
  32. Science. 2007 May 25;316(5828):1144-8 [PMID: 17525328]
  33. J Mol Biol. 2012 Sep 14;422(2):300-9 [PMID: 22613761]
  34. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6594-6601 [PMID: 30890636]
  35. Biophys J. 2017 Dec 19;113(12):2595-2600 [PMID: 29132641]
  36. Science. 1978 May 12;200(4342):618-27 [PMID: 347575]
  37. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12468-72 [PMID: 11592975]
  38. Methods Mol Biol. 2018;1814:243-264 [PMID: 29956237]
  39. Eur Biophys J. 2005 Feb;34(1):91-6 [PMID: 15257425]
  40. J Struct Biol. 2017 Jan;197(1):3-12 [PMID: 26873782]
  41. J Chem Phys. 2018 Mar 28;148(12):123335 [PMID: 29604819]
  42. Nat Phys. 2017 Aug;13(8):771-775 [PMID: 28781604]
  43. Science. 2017 Mar 03;355(6328):945-950 [PMID: 28254940]
  44. ACS Omega. 2017 Jun 30;2(6):3064-3069 [PMID: 30023682]
  45. Science. 1997 May 16;276(5315):1109-12 [PMID: 9148804]
  46. Nat Commun. 2014 Dec 08;5:5635 [PMID: 25482395]
  47. Science. 1994 Apr 15;264(5157):415-7 [PMID: 8153628]
  48. Nature. 1999 Jan 7;397(6714):50-3 [PMID: 9892352]
  49. Biophys J. 1997 Apr;72(4):1568-81 [PMID: 9083662]
  50. Nature. 2010 Nov 4;468(7320):72-6 [PMID: 20935627]
  51. Cell. 2015 Nov 5;163(4):866-79 [PMID: 26522593]
  52. Science. 2000 Apr 7;288(5463):143-6 [PMID: 10753119]
  53. Rev Sci Instrum. 2012 Oct;83(10):103705 [PMID: 23126772]
  54. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12283-8 [PMID: 9770478]
  55. Biophys J. 2016 Aug 23;111(4):832-840 [PMID: 27558726]
  56. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15815-20 [PMID: 16236721]
  57. Nanoscale. 2018 Dec 20;11(1):125-135 [PMID: 30525150]
  58. Phys Rev Lett. 2006 Mar 17;96(10):108101 [PMID: 16605793]
  59. Nat Nanotechnol. 2012 Aug;7(8):525-9 [PMID: 22772862]

Grants

  1. 772257/European Research Council
  2. RGP0056/2018/Human Frontier Science Program
  3. ANR-15-CE11-0007/Agence Nationale de la Recherche

Word Cloud

Created with Highcharts 10.0.0forcetimeHigh-speedcantileversHS-FScellsmicroscopyHS-AFMusingultrashortdynamicsmechanicsunderstandingmechanicalbiologicallivingMoreoverresponseseveralmeasurementsscalesatomicspectroscopyallowsprobingmolecularCompleteroleforcesprocessesrequiresknowledgepropertiesindividualproteinsdynamicsystemsnano-microscalesspanordersmagnitudesub-microsecondsminutesThusaccesswiderangelengthrequiredemergedtoolstudybiomoleculesvideoratesadaptationperformhigh-speedproteinunfoldingreceptor/ligandunbindingvelocityMDsimulationssub-microsecondresolutionapplicationviscoelasticshortprovidingdeepcytoskeletonmini-reviewassessprinciplesrecentdevelopmentsapplicationsprobecellularspectroscopy:microsecondAtomicCellularMolecularUltrashort

Similar Articles

Cited By