Environmental conditions for Jamestown Canyon virus correlated with population-level resource selection by white-tailed deer in a suburban landscape.

Karmen M Hollis-Etter, Robert A Montgomery, Dwayne R Etter, Christopher L Anchor, James E Chelsvig, Richard E Warner, Paul R Grimstad, Diane D Lovin, Marvin S Godsey
Author Information
  1. Karmen M Hollis-Etter: Biology Department, University of Michigan-Flint, Flint, Michigan, United States of America. ORCID
  2. Robert A Montgomery: Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America.
  3. Dwayne R Etter: Wildlife Division Michigan Department of Natural Resources, Lansing, Michigan, United States of America.
  4. Christopher L Anchor: Forest Preserve District of Cook County, River Forest, Illinois, United States of America.
  5. James E Chelsvig: Forest Preserve District of Cook County, River Forest, Illinois, United States of America.
  6. Richard E Warner: Natural Resources and Environmental Sciences, University of Illinois Champaign-Urbana, Urbana, Illinois, United States of America.
  7. Paul R Grimstad: Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.
  8. Diane D Lovin: Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.
  9. Marvin S Godsey: Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America.

Abstract

Suburban landscapes can alter spatial patterns by white-tailed deer (Odocoileus virginianus) and increase animal contact with vectors, pathogens, and humans. Close-contact relationships at a landscape level can have broad implications for disease epidemiology. From 1995-1999, we captured and radio-collared 41 deer in two suburban forest preserves in Chicago, Illinois. We collected blood to determine if animals were seronegative or seropositive for Jamestown Canyon virus and tracked deer movements within suburban habitats. We developed utilization distributions at the population-level and evaluated resource selection for seronegative and seropositive deer. We used maximum likelihood estimation for model selection via Akaike information criterion and then restricted maximum likelihood estimation to attain unbiased estimates of the parameters in the top-ranking models. The top-ranking model describing the resource selection of seronegative deer received almost the full weight of evidence (Akaike information criterion ωi = 0.93), and included the proportion of wetlands, precipitation in year t, and an interaction of the proportion of wetlands and precipitation in year t. The top-ranking model describing resource selection of seropositive deer received the full weight of evidence (Akaike information criterion ωi = 1.00). The model included distance to nearest populated place, distance to nearest river, length of road in each grid cell, precipitation in year t, and an interaction of the length of road in each grid cell and precipitation in year t. These results are valuable for mapping the spatial configuration of hotspots for Jamestown Canyon virus and could be used to educate local residents and recreationalists to reduce human exposure.

References

  1. J Med Entomol. 2008 Jul;45(4):581-93 [PMID: 18714856]
  2. Int Health. 2013 Dec;5(4):251-8 [PMID: 24225151]
  3. Am J Trop Med Hyg. 2007 Sep;77(3):478-84 [PMID: 17827363]
  4. Nature. 2008 Feb 21;451(7181):990-3 [PMID: 18288193]
  5. Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):983-9 [PMID: 11516376]
  6. J Wildl Dis. 1991 Apr;27(2):230-7 [PMID: 1906113]
  7. J Vector Ecol. 2007 Jun;32(1):22-8 [PMID: 17633422]
  8. PLoS One. 2014 Jun 26;9(6):e100841 [PMID: 24968318]
  9. Emerg Infect Dis. 2001 Sep-Oct;7(5):911-2 [PMID: 11747714]
  10. J Wildl Dis. 1987 Jan;23(1):23-33 [PMID: 3820426]
  11. Vector Borne Zoonotic Dis. 2008 Apr;8(2):175-88 [PMID: 18386967]
  12. Trends Ecol Evol. 2017 Jan;32(1):55-67 [PMID: 28029378]
  13. Perspect Biol Med. 1991 Spring;34(3):387-409 [PMID: 2067933]
  14. Trends Ecol Evol. 1999 Jul;14(7):268-272 [PMID: 10370262]
  15. J Anim Ecol. 2013 Nov;82(6):1183-91 [PMID: 24499379]
  16. Ecol Evol. 2013 Jul;3(7):2233-40 [PMID: 23919165]
  17. Am J Trop Med Hyg. 1972 Nov;21(6):979-84 [PMID: 4635778]
  18. Emerg Infect Dis. 2018 Jan;24(1):118-121 [PMID: 29260667]
  19. Bull Entomol Res. 2018 Apr;108(2):203-212 [PMID: 28770688]
  20. Trans R Soc Trop Med Hyg. 1958 Mar;52(2):135-51 [PMID: 13543903]
  21. J Vector Ecol. 2013 Dec;38(2):229-36 [PMID: 24581350]
  22. J Wildl Dis. 1987 Jan;23(1):12-22 [PMID: 3102763]
  23. J Med Entomol. 2011 Jul;48(4):813-21 [PMID: 21845940]
  24. J Zoo Wildl Med. 2007 Mar;38(1):18-26 [PMID: 17469271]
  25. J Wildl Dis. 1989 Apr;25(2):300-1 [PMID: 2716117]
  26. J Am Mosq Control Assoc. 1992 Mar;8(1):1-10 [PMID: 1583479]
  27. Urban Ecosyst. 2012 Sep;15(3):513-531 [PMID: 25484570]

MeSH Term

Animals
Bunyaviridae Infections
Climate
Deer
Disease Reservoirs
Disease Vectors
Ecosystem
Encephalitis Virus, California
Illinois
Serologic Tests

Word Cloud

Created with Highcharts 10.0.0deerselectionresourcemodelprecipitationyeartsuburbanseronegativeseropositiveJamestownCanyonvirusAkaikeinformationcriteriontop-rankingcanspatialwhite-tailedlandscapepopulation-levelusedmaximumlikelihoodestimationdescribingreceivedfullweightevidenceωi=includedproportionwetlandsinteractiondistancenearestlengthroadgridcellSuburbanlandscapesalterpatternsOdocoileusvirginianusincreaseanimalcontactvectorspathogenshumansClose-contactrelationshipslevelbroadimplicationsdiseaseepidemiology1995-1999capturedradio-collared41twoforestpreservesChicagoIllinoiscollectedblooddetermineanimalstrackedmovementswithinhabitatsdevelopedutilizationdistributionsevaluatedviarestrictedattainunbiasedestimatesparametersmodelsalmost093100populatedplaceriverresultsvaluablemappingconfigurationhotspotseducatelocalresidentsrecreationalistsreducehumanexposureEnvironmentalconditionscorrelated

Similar Articles

Cited By