CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2.

Caren Yu-Ju Wu, Chia-Hua Chen, Chun-Yen Lin, Li-Ying Feng, Yung-Chang Lin, Kuo-Chen Wei, Chiung-Yin Huang, Jia-You Fang, Pin-Yuan Chen
Author Information
  1. Caren Yu-Ju Wu: Graduate Institute of Biomedical Sciences, Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.
  2. Chia-Hua Chen: Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  3. Chun-Yen Lin: Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  4. Li-Ying Feng: Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  5. Yung-Chang Lin: Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  6. Kuo-Chen Wei: Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  7. Chiung-Yin Huang: Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  8. Jia-You Fang: Graduate Institute of Biomedical Sciences, Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.
  9. Pin-Yuan Chen: Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.

Abstract

BACKGROUND: Glioma-associated microglia/macrophages (GAMs) comprise macrophages of peripheral origin and brain-intrinsic microglia, which support tumor progression. Chemokine C-C ligand 5 (CCL5) is an inflammatory mediator produced by immune cells and is involved in tumor growth and migration in several cancers, including glioma. However, the mechanisms detailing how CCL5 facilitates glioma invasion remain largely unresolved.
METHODS: Glioma migration and invasion were determined by wound healing, transwell assay, and 3D µ-slide chemotaxis assay. The expression levels of CCL5, CD68, matrix metalloproteinase 2 (MMP2), phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), p-Akt, and phosphorylated proline-rich tyrosine kinase 2 were determined by cytokine array, quantitative PCR, western blot, or immunohistochemistry. Zymography and intracellular calcium assays were used to analyze MMP2 activity and intracellular calcium levels, respectively.
RESULTS: CCL5 modulated the migratory and invasive activities of human glioma cells in association with MMP2 expression. In response to CCL5, glioma cells underwent a synchronized increase in intracellular calcium levels and p-CaMKII and p-Akt expression levels. CCL5-directed glioma invasion and increases in MMP2 were suppressed after inhibition of p-CaMKII. Glioma cells tended to migrate toward GAM-conditioned media activated by granulocyte-macrophage colony-stimulating factor (GM-CSF) in which CCL5 was abundant. This homing effect was associated with MMP2 upregulation, and could be ameliorated either by controlling intracellular and extracellular calcium levels or by CCL5 antagonism. Clinical results also revealed the associations between CCL5 and GAM activation.
CONCLUSION: Our results suggest that modulation of glioma CaMKII may restrict the effect of CCL5 on glioma invasion and could be a potential therapeutic target for alleviating glioma growth.

Keywords

References

  1. Nature. 2012 Aug 23;488(7412):522-6 [PMID: 22854781]
  2. ScientificWorldJournal. 2001 Dec 22;1:919-25 [PMID: 12805727]
  3. Mol Neurobiol. 2017 Jan;54(1):804-816 [PMID: 27351676]
  4. Hum Mol Genet. 2016 May 1;25(9):1703-13 [PMID: 26908603]
  5. Mol Med Rep. 2015 Nov;12(5):6702-10 [PMID: 26299938]
  6. Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5323-9 [PMID: 25015352]
  7. Nature. 2015 Dec 3;528(7580):93-8 [PMID: 26536111]
  8. Biochim Biophys Acta. 2011 May;1813(5):655-67 [PMID: 21276823]
  9. Acta Neuropathol. 2002 Feb;103(2):171-8 [PMID: 11810184]
  10. Biomolecules. 2017 Mar 27;7(2): [PMID: 28346397]
  11. J Leukoc Biol. 2009 Jan;85(1):154-64 [PMID: 18835883]
  12. J Vis Exp. 2014 Sep 09;(91):e51554 [PMID: 25226391]
  13. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4214-23 [PMID: 25246577]
  14. PLoS One. 2011;6(8):e23902 [PMID: 21901144]
  15. Expert Opin Biol Ther. 2010 May;10(5):725-33 [PMID: 20233026]
  16. Br J Cancer. 2014 May 13;110(10):2560-8 [PMID: 24691423]
  17. Biochemistry. 2001 May 29;40(21):6303-18 [PMID: 11371192]
  18. J Pathol. 2013 Jul;230(3):310-21 [PMID: 23520016]
  19. Neuro Oncol. 2016 Oct 1;18(suppl_5):v1-v75 [PMID: 28475809]
  20. Genes Cells. 2016 Mar;21(3):241-51 [PMID: 26805963]
  21. Mediators Inflamm. 2014;2014:292376 [PMID: 24523569]
  22. Neuro Oncol. 2015 Aug;17(8):1174-6 [PMID: 26142442]
  23. J Neurosci. 2010 Sep 8;30(36):11983-93 [PMID: 20826662]
  24. J Neurooncol. 2014 Jun;118(2):257-269 [PMID: 24756349]
  25. J Cell Sci. 2002 Feb 15;115(Pt 4):839-48 [PMID: 11865039]
  26. Oncotarget. 2016 Dec 20;7(51):85437-85449 [PMID: 27863423]
  27. Biomed Pharmacother. 2016 Feb;77:142-9 [PMID: 26796278]
  28. J Biol Chem. 2012 Jun 15;287(25):20942-56 [PMID: 22544749]
  29. FEBS Lett. 2008 Mar 5;582(5):799-804 [PMID: 18267120]
  30. Neuromolecular Med. 2015 Dec;17(4):335-52 [PMID: 26224516]
  31. J Exp Med. 1997 Oct 20;186(8):1373-81 [PMID: 9334377]
  32. J Cell Sci. 2009 Sep 1;122(Pt 17):3015-24 [PMID: 19692588]
  33. Glia. 2012 Jan;60(1):96-111 [PMID: 21989594]
  34. J Neuroimmunol. 2012 May 15;246(1-2):10-7 [PMID: 22425022]
  35. Cytokine. 2012 Mar;57(3):347-59 [PMID: 22200506]
  36. Clin Neurol Neurosurg. 2017 Aug;159:72-82 [PMID: 28687250]
  37. Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt A):2015-2025 [PMID: 28499917]
  38. Biochem Pharmacol. 2010 Jan 15;79(2):209-17 [PMID: 19682436]
  39. Nat Rev Cancer. 2014 Sep;14(9):598-610 [PMID: 25098269]
  40. Acta Biochim Biophys Sin (Shanghai). 2015 Nov;47(11):890-8 [PMID: 26390883]
  41. J Neurooncol. 2004 Dec;70(3):301-7 [PMID: 15662971]
  42. Neoplasia. 2015 Oct;17(10):776-88 [PMID: 26585233]
  43. Acta Neuropathol. 2016 Mar;131(3):365-78 [PMID: 26718201]
  44. Oncol Rep. 2014 Feb;31(2):800-6 [PMID: 24337063]
  45. Nat Neurosci. 2016 Jan;19(1):20-7 [PMID: 26713745]
  46. Scand J Immunol. 2014 Aug;80(2):144-50 [PMID: 24813240]
  47. Oncotarget. 2017 May 16;8(20):32977-32989 [PMID: 28380429]
  48. Neuro Oncol. 2008 Jun;10(3):254-64 [PMID: 18359864]

MeSH Term

Brain Neoplasms
Calcium
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Cell Movement
Chemokine CCL5
Glioma
Humans
Macrophages
Matrix Metalloproteinase 2
Microglia
Neoplasm Invasiveness

Chemicals

CCL5 protein, human
Chemokine CCL5
Calcium-Calmodulin-Dependent Protein Kinase Type 2
MMP2 protein, human
Matrix Metalloproteinase 2
Calcium

Word Cloud

Created with Highcharts 10.0.0CCL5gliomainvasionMMP2levelscellsintracellularcalciummigrationexpression2p-CaMKIImicroglia/macrophagesmicrogliatumorgrowthGliomadeterminedassaymatrixmetalloproteinasephosphorylatedkinasep-AkteffectresultsBACKGROUND:Glioma-associatedGAMscomprisemacrophagesperipheraloriginbrain-intrinsicsupportprogressionChemokineC-Cligand5inflammatorymediatorproducedimmuneinvolvedseveralcancersincludingHowevermechanismsdetailingfacilitatesremainlargelyunresolvedMETHODS:woundhealingtranswell3Dµ-slidechemotaxisCD68Ca2+/calmodulin-dependentproteinIIproline-richtyrosinecytokinearrayquantitativePCRwesternblotimmunohistochemistryZymographyassaysusedanalyzeactivityrespectivelyRESULTS:modulatedmigratoryinvasiveactivitieshumanassociationresponseunderwentsynchronizedincreaseCCL5-directedincreasessuppressedinhibitiontendedmigratetowardGAM-conditionedmediaactivatedgranulocyte-macrophagecolony-stimulatingfactorGM-CSFabundanthomingassociatedupregulationamelioratedeithercontrollingextracellularantagonismClinicalalsorevealedassociationsGAMactivationCONCLUSION:suggestmodulationCaMKIImayrestrictpotentialtherapeutictargetalleviatingglioma-associatedregulatesviacalcium-dependent

Similar Articles

Cited By