6-Bromoindirubin-3'-Oxime Suppresses LPS-Induced Inflammation via Inhibition of the TLR4/NF-κB and TLR4/MAPK Signaling Pathways.

Chang Liu, Xin Tang, Wenjing Zhang, Guohong Li, Yingyu Chen, Aizhen Guo, Changmin Hu
Author Information
  1. Chang Liu: The Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
  2. Xin Tang: The Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
  3. Wenjing Zhang: The Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
  4. Guohong Li: The Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
  5. Yingyu Chen: The Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
  6. Aizhen Guo: The Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
  7. Changmin Hu: The Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. hcm@mail.hzau.edu.cn.

Abstract

We investigated the efficacy of the traditional herbal extract 6-bromoindirubin-3'-oxime (BIO) against lipopolysaccharide (LPS)-induced mastitis in mice and inflammatory signaling in mouse mammary epithelial cells (MMECs). In vivo, breast inflammation scores and enzyme-linked immunosorbent assay (ELISA) detection of pro-inflammatory factor expression were used to assess the effect of BIO against mastitis. In vitro, the effects of BIO on LPS-induced changes in the expression levels of pro-inflammatory factors, anti-inflammatory cytokines, and signaling factors of the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) and TLR4/mitogen-activated protein kinase (MAPK) pathways were examined by qRT-PCR and ELISA. In LPS-injected mice, BIO pretreatment downregulated the expression of the pro-inflammatory factors interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO) in mammary glands and reduced inflammatory lesions in breast tissue. In MMECs, BIO pretreatment downregulated the LPS-induced expression of IL-1β, IL-6, and TNF-α. Further, BIO inhibited both the expression and phosphorylation of TLR4/NF-κB and TLR4/MAPK signaling factors. Thus, BIO downregulates IL-6, IL-1β, TNF-α, and MPO expression, upregulates IL-10 expression, and suppresses LPS-induced inflammation by inhibiting the TLR4/NF-κB and TLR4/MAPK pathways. BIO may be a potential treatment agent for mastitis and other inflammatory diseases.

Keywords

References

  1. Ouyang, W., S. Rutz, N.K. Crellin, P.A. Valdez, and S.G. Hymowitz. 2011. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annual Review of Immunology 29 (29): 71–109. [DOI: 10.1146/annurev-immunol-031210-101312]
  2. Kiku, Y., T.O. Zawa, H.T. Akahashi, et al. 2017. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis. Veterinary Research Communications: 1–8.
  3. Gilbert, F.B., P.C. Unha, K.J. Ensen, et al. 2013. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Veterinary Research 44 (1): 40. [DOI: 10.1186/1297-9716-44-40]
  4. Wang, C., X. Bai, and C. Wang. 2014. Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. American Journal of Chinese Medicine 42 (3): 1450035. [DOI: 10.1142/S0192415X14500359]
  5. Lai, J.L., Y.H. Liu, C. Liu, M.P. Qi, R.N. Liu, X.F. Zhu, Q.G. Zhou, Y.Y. Chen, A.Z. Guo, and C.M. Hu. 2017. Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-κB and MAPK signaling pathways. Inflammation. 40 (1): 1–12. [DOI: 10.1007/s10753-016-0447-7]
  6. Engel, M.A., C.A. Kellermann, G. Burnat, E.G. Hahn, T. Rau, and P.C. Konturek. 2010. Mice lacking cannabinoid CB1-, CB2-receptors or both receptors show increased susceptibility to trinitrobenzene sulfonic acid (TNBS)-induced colitis. Journal of Physiology and Pharmacology 61 (1): 89–97. [PMID: 20228420]
  7. Lai, J.L., Y.H. Liu, Y.C. Peng, P. Ge, C.F. He, C. Liu, Y.Y. Chen, A.Z. Guo, and C.M. Hu. 2017. Indirubin treatment of lipopolysaccharide-induced mastitis in a mouse model and activity in mouse mammary epithelial cells. Mediators of Inflammation: 3082805. https://doi.org/10.1155/2017/3082805. [DOI: 10.1155/2017/3082805]
  8. Michlewska, S.M.C.F., I.I. Dransfield, and A. Rossi. 2009. Macrophage phagocytosis of apoptotic neutrophils is critically regulated by the opposing actions of pro-inflammatory and anti-inflammatory agents: key role for TNF-alpha. FASEB Journal 23 (3): 844–854. [DOI: 10.1096/fj.08-121228]
  9. Lv, X., K. Fu, W. Li, Y. Wang, J. Wang, H. Li, W. Tian, and R. Cao. 2015. TIIA attenuates LPS-induced mouse endometritis by suppressing the NF-κB signaling pathway. Canadian Journal of Physiology and Pharmacology 93 (11): 967–971. [DOI: 10.1139/cjpp-2015-0003]
  10. Fang, W.F., Y.M. Chen, C.Y. Lin, H.L. Huang, H. Yeh, Y.T. Chang, K.T. Huang, and M.C. Lin. 2018. Histone deacetylase 2 (HDAC2) attenuates lipopolysaccharide (LPS)-induced inflammation by regulating PAI-1 expression. Journal of Inflammation 15 (1): 3. [DOI: 10.1186/s12950-018-0179-6]
  11. Braig, S., C.A. Kressirer, J. Liebl, F. Bischoff, S. Zahler, L. Meijer, and A.M. Vollmar. 2013. Indirubin derivative 6 BIO suppresses metastasis. Cancer Research 73 (19): 6004–6012. [DOI: 10.1158/0008-5472.CAN-12-4358]
  12. Eljaafari, A., M. Robert, M. Chehimi, S. Chanon, C. Durand, G. Vial, N. Bendridi, A.M. Madec, E. Disse, M. Laville, J. Rieusset, E. Lefai, H. Vidal, and L. Pirola. 2015. Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation. Diabetes 64 (7): 2477–2488. [DOI: 10.2337/db15-0162]
  13. Banks, W.A., A.J. Kastin, and E.G. Gutierrez. 1994. Penetration of interleukin-6 across the murine blood-brain barrier. Neuroscience Letters 179 (1–2): 53–56. [DOI: 10.1016/0304-3940(94)90933-4]
  14. Schaper, F., and S. Rose-John. 2015. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine & Growth Factor Reviews 26 (5): 475–487. [DOI: 10.1016/j.cytogfr.2015.07.004]
  15. Kearney, C.J., S.P. Cullen, G.A. Tynan, C.M. Henry, D. Clancy, E.C. Lavelle, and S.J. Martin. 2015. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death and Differentiation 22 (8): 1313–1327. [DOI: 10.1038/cdd.2014.222]
  16. Siqueira, M.B., A. Kroner, E.I. Girolami, et al. 2015. Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 35 (50): 16431–16442. [DOI: 10.1523/JNEUROSCI.2119-15.2015]
  17. Jr, J.C., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20 (1): 197–216. [DOI: 10.1146/annurev.immunol.20.083001.084359]
  18. Aratani, Y. 2018. Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Archives of Biochemistry and Biophysics 640: 47–52. [DOI: 10.1016/j.abb.2018.01.004]
  19. Zhang, X., Y. Wang, C. Xiao, Z. Wei, J. Wang, Z. Yang, and Y. Fu. 2017. Resveratrol inhibits LPS-induced mice mastitis through attenuating the MAPK and NF-κB signaling pathway. Microbial Pathogenesis 107: 462–467. [DOI: 10.1016/j.micpath.2017.04.002]
  20. May, M.J., and S. Ghosh. 1998. NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses. Immunology Today 19.
  21. Serasanambati, M., and S.R. Chilakapati. 2016. Function of nuclear factor kappa B (NF-κB) in human diseases—a review. South Indian Journal of Biological Sciences 2 (4): 368–387. [DOI: 10.22205/sijbs/2016/v2/i4/103443]
  22. Liu, Y., H. Yin, M. Zhao, and Q. Lu. 2014. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clinical Reviews in Allergy & Immunology 47 (2): 136–147. [DOI: 10.1007/s12016-013-8402-y]
  23. Thalhamer, T., M.A. Mcgrath, and M.M. Harnett. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology 47 (4): 409–414. [DOI: 10.1093/rheumatology/kem297]
  24. Kyriakis, J.M., and J. Avruch. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiological Reviews 92 (2): 689–737. [DOI: 10.1152/physrev.00028.2011]

Grants

  1. No. CARS-38/China Agriculture Research System (Beef/Yak cattle)
  2. No. 2016YFD0500906/National Key Research and Development Plan

MeSH Term

Animals
Female
Indoles
Inflammation
Lipopolysaccharides
MAP Kinase Signaling System
Mammary Glands, Animal
Mastitis
Mice
NF-kappa B
Oximes
Signal Transduction
Toll-Like Receptor 4

Chemicals

6-bromoindirubin-3'-oxime
Indoles
Lipopolysaccharides
NF-kappa B
Oximes
Tlr4 protein, mouse
Toll-Like Receptor 4

Word Cloud

Created with Highcharts 10.0.0BIOexpressionfactorsmastitisinflammatorysignalinginflammationpro-inflammatoryLPS-inducedIL-6TLR4/NF-κBTLR4/MAPKlipopolysaccharideLPSmicemammaryMMECsbreastELISAfactorTLR4NF-κBMAPKpathwayspretreatmentdownregulatedMPOIL-1βTNF-αinvestigatedefficacytraditionalherbalextract6-bromoindirubin-3'-oxime-inducedmouseepithelialcellsvivoscoresenzyme-linkedimmunosorbentassaydetectionusedassesseffectvitroeffectschangeslevelsanti-inflammatorycytokinestoll-likereceptor4/nuclearfactor-κBTLR4/mitogen-activatedproteinkinaseexaminedqRT-PCRLPS-injectedinterleukinIL-1βtumornecrosisTNFmyeloperoxidaseglandsreducedlesionstissueinhibitedphosphorylationThusdownregulatesupregulatesIL-10suppressesinhibitingmaypotentialtreatmentagentdiseases6-Bromoindirubin-3'-OximeSuppressesLPS-InducedInflammationviaInhibitionSignalingPathways

Similar Articles

Cited By