Cyclometalated Ir-Zr Metal-Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water.

Lian-Qiang Wei, Bao-Hui Ye
Author Information
  1. Lian-Qiang Wei: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China.
  2. Bao-Hui Ye: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China. ORCID

Abstract

Aerobic photo-oxidation of sulfide into sulfoxide in water is of great interest in green chemistry. In this study, three highly stable Ir(III)-Zr(IV) metal-organic frameworks (Ir-Zr MOFs), namely Zr-Irbpy (bpy is 2,2'-bipyridine), Zr-IrbpyOMe (bpyOMe is 4,4'-dimethoxy-2,2'-bipyridine), and Zr-Irphen (phen is 1,10-phenanthroline), are constructed by using [Ir(pqc)(L)]Cl complexes (where pqc is 2-phenylquinoline-4-carboxylic acid and L is an ancillary ligand bpy, bpyOMe, or phen) as linkers and Zr cluster as nodes. The constructed Ir-Zr MOFs present high catalytic activity on aerobic photo-oxidation of sulfide into sulfoxide under visible light irradiation in water at room temperature. Moreover, the reaction is high chemoselectivity and functional group tolerance. The catalyst can be readily recycled and reused at least 10 times without loss of catalytic activity. Mechanism studies demonstrate that superoxide radical is the reactive oxygen species in the sulfoxidation, which is generated by electron transfer from the excited triplet photosensitizer [Ir-Zr-MOF]* to O. The high activity of photocatalytic sulfoxidation in water may be attributed to the stabilization of the persulfoxide intermediate by hydrogen bond formation with water solvent, which accelerates the conversion of persulfoxide into sulfoxide and prevents further oxidation of sulfoxide into sulfone. This work provides a new strategy for the green synthesis of sulfoxides under ambient conditions.

Keywords

Word Cloud

Created with Highcharts 10.0.0sulfoxidewatersulfideIr-Zrhighactivityphoto-oxidationgreenMOFsbpy2'-bipyridinebpyOMephenconstructedpqcLcatalyticsulfoxidationpersulfoxideoxidationAerobicgreatinterestchemistrystudythreehighlystableIrIII-ZrIVmetal-organicframeworksnamelyZr-Irbpy2Zr-IrbpyOMe44'-dimethoxy-2Zr-Irphen110-phenanthrolineusing[Ir]Clcomplexes2-phenylquinoline-4-carboxylicacidancillaryligandlinkersZrclusternodespresentaerobicvisiblelightirradiationroomtemperatureMoreoverreactionchemoselectivityfunctionalgrouptolerancecatalystcanreadilyrecycledreusedleast10timeswithoutlossMechanismstudiesdemonstratesuperoxideradicalreactiveoxygenspeciesgeneratedelectrontransferexcitedtripletphotosensitizer[Ir-Zr-MOF]*OphotocatalyticmayattributedstabilizationintermediatehydrogenbondformationsolventacceleratesconversionpreventssulfoneworkprovidesnewstrategysynthesissulfoxidesambientconditionsCyclometalatedMetal-OrganicFrameworksRecyclableVisible-LightPhotocatalystsSulfideOxidationSulfoxideWatermetal−organicframeworkphotocatalysis

Similar Articles

Cited By