Acetyl-CoA-mediated activation of Mycobacterium tuberculosis isocitrate lyase 2.

Ram Prasad Bhusal, Wanting Jiao, Brooke X C Kwai, Jóhannes Reynisson, Annabelle J Collins, Jonathan Sperry, Ghader Bashiri, Ivanhoe K H Leung
Author Information
  1. Ram Prasad Bhusal: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. ORCID
  2. Wanting Jiao: Ferrier Research Institute, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand. ORCID
  3. Brooke X C Kwai: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. ORCID
  4. Jóhannes Reynisson: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. ORCID
  5. Annabelle J Collins: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. ORCID
  6. Jonathan Sperry: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. j.sperry@auckland.ac.nz. ORCID
  7. Ghader Bashiri: Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. g.bashiri@auckland.ac.nz. ORCID
  8. Ivanhoe K H Leung: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. i.leung@auckland.ac.nz. ORCID

Abstract

Isocitrate lyase is important for lipid utilisation by Mycobacterium tuberculosis but its ICL2 isoform is poorly understood. Here we report that binding of the lipid metabolites acetyl-CoA or propionyl-CoA to ICL2 induces a striking structural rearrangement, substantially increasing isocitrate lyase and methylisocitrate lyase activities. Thus, ICL2 plays a pivotal role regulating carbon flux between the tricarboxylic acid (TCA) cycle, glyoxylate shunt and methylcitrate cycle at high lipid concentrations, a mechanism essential for bacterial growth and virulence.

References

  1. Nat Med. 2005 Jun;11(6):638-44 [PMID: 15895072]
  2. Medchemcomm. 2017 Oct 17;8(11):2155-2163 [PMID: 30108733]
  3. J Bacteriol. 1999 Dec;181(23):7161-7 [PMID: 10572116]
  4. Nat Struct Biol. 2000 Aug;7(8):663-8 [PMID: 10932251]
  5. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  6. Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54 [PMID: 12393927]
  7. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  8. J Comput Chem. 2012 Dec 5;33(31):2451-68 [PMID: 22821581]
  9. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4976-81 [PMID: 24639517]
  10. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68 [PMID: 15572779]
  11. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7617-7622 [PMID: 28679637]
  12. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 [PMID: 21460441]
  13. Nat Commun. 2016 Aug 24;7:12527 [PMID: 27555519]
  14. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67 [PMID: 21460454]
  15. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82 [PMID: 16369096]
  16. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  17. J Comput Chem. 2013 Dec 15;34(32):2757-70 [PMID: 24000174]
  18. J Comput Chem. 2010 Mar;31(4):671-90 [PMID: 19575467]
  19. Trends Microbiol. 2011 Jul;19(7):307-14 [PMID: 21561773]
  20. J Struct Biol. 2016 Jun;194(3):395-403 [PMID: 27016285]
  21. Mol Microbiol. 2006 Aug;61(4):940-7 [PMID: 16879647]
  22. Int J Biochem Cell Biol. 2015 Feb;59:193-202 [PMID: 25456444]
  23. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  24. IUCrJ. 2014 May 30;1(Pt 4):213-20 [PMID: 25075342]
  25. Cold Spring Harb Perspect Med. 2014 Dec 11;5(4): [PMID: 25502746]
  26. Biochemistry. 1982 Aug 31;21(18):4420-7 [PMID: 7126549]
  27. J Chem Inf Model. 2012 Dec 21;52(12):3144-54 [PMID: 23146088]
  28. Curr Top Microbiol Immunol. 2013;374:163-88 [PMID: 23242856]
  29. PLoS One. 2010 Dec 29;5(12):e15803 [PMID: 21209917]
  30. Nature. 2000 Aug 17;406(6797):735-8 [PMID: 10963599]
  31. Chem Biol. 2012 Feb 24;19(2):218-27 [PMID: 22365605]
  32. Structure. 2000 Apr 15;8(4):349-62 [PMID: 10801489]
  33. Chem Biol. 2010 Oct 29;17(10):1122-31 [PMID: 21035735]
  34. J Biol Chem. 2015 Oct 23;290(43):26218-34 [PMID: 26350458]
  35. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  36. J Appl Crystallogr. 2009 Dec 1;42(Pt 6):1035-1042 [PMID: 22477774]
  37. Genome Biol. 2007;8(3):R31 [PMID: 17335583]
  38. J Comput Chem. 2013 Sep 30;34(25):2135-45 [PMID: 23832629]
  39. J Chem Inf Model. 2012 Dec 21;52(12):3155-68 [PMID: 23145473]
  40. Nucleic Acids Res. 2016 Jul 8;44(W1):W424-9 [PMID: 27151198]
  41. Nucleic Acids Res. 2006 Aug 02;34(13):3646-59 [PMID: 16885238]
  42. Drug Discov Today. 2017 Jul;22(7):1008-1016 [PMID: 28458043]
  43. BMC Res Notes. 2015 Oct 01;8:517 [PMID: 26429562]
  44. Sci Rep. 2017 Mar 21;7:44826 [PMID: 28322251]

MeSH Term

Acetyl Coenzyme A
Acyl Coenzyme A
Carbon
Citric Acid Cycle
Crystallography, X-Ray
Isocitrate Lyase
Lipid Metabolism
Magnetic Resonance Spectroscopy
Molecular Docking Simulation
Mycobacterium tuberculosis
Protein Domains

Chemicals

Acyl Coenzyme A
propionyl-coenzyme A
Acetyl Coenzyme A
Carbon
Isocitrate Lyase

Word Cloud

Created with Highcharts 10.0.0lyaselipidICL2MycobacteriumtuberculosisisocitratecycleIsocitrateimportantutilisationisoformpoorlyunderstoodreportbindingmetabolitesacetyl-CoApropionyl-CoAinducesstrikingstructuralrearrangementsubstantiallyincreasingmethylisocitrateactivitiesThusplayspivotalroleregulatingcarbonfluxtricarboxylicacidTCAglyoxylate shuntmethylcitratehighconcentrationsmechanismessentialbacterialgrowthvirulenceAcetyl-CoA-mediatedactivation2

Similar Articles

Cited By