THE GRAPHICAL STRUCTURE OF RESPONDENT-DRIVEN SAMPLING.

Forrest W Crawford
Author Information
  1. Forrest W Crawford: Yale School of Public Health, New Haven, CT, USA.

Abstract

Respondent-driven sampling (RDS) is a chain-referral method for sampling members of hidden or hard-to-reach populations, such as sex workers, homeless people, or drug users, via their social networks. Most methodological work on RDS has focused on inference of population means under the assumption that subjects' network degree determines their probability of being sampled. Criticism of existing estimators is usually focused on missing data: the underlying network is only partially observed, so it is difficult to determine correct sampling probabilities. In this article, the author shows that data collected in ordinary RDS studies contain information about the structure of the respondents' social network. The author constructs a continuous-time model of RDS recruitment that incorporates the time series of recruitment events, the pattern of coupon use, and the network degrees of sampled subjects. Together, the observed data and the recruitment model place a well-defined probability distribution on the recruitment-induced subgraph of respondents. The author shows that this distribution can be interpreted as an exponential random graph model and develops a computationally efficient method for estimating the hidden graph. The author validates the method using simulated data and applies the technique to an RDS study of injection drug users in St. Petersburg, Russia.

Keywords

References

  1. Sociol Methodol. 2009 Aug 1;39(1):73-116 [PMID: 20161130]
  2. Sociol Methodol. 2010 Aug;40(1):285-327 [PMID: 22969167]
  3. Ann Appl Stat. 2010;4(1):5-25 [PMID: 26561513]
  4. AIDS Behav. 2010 Aug;14(4):932-41 [PMID: 18843531]
  5. PLoS One. 2014 Jan 08;9(1):e85256 [PMID: 24416371]
  6. J R Stat Soc Ser A Stat Soc. 2015 Jun;178(3):619-639 [PMID: 26640328]
  7. Drug Alcohol Depend. 2014 Sep 1;142:120-6 [PMID: 24999062]
  8. Biometrics. 2017 Dec;73(4):1189-1198 [PMID: 28257143]
  9. Netw Sci (Camb Univ Press). 2014;2(2):298-301 [PMID: 27014461]
  10. Epidemiology. 2012 Jan;23(1):148-50 [PMID: 22157310]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061916 [PMID: 19658533]
  12. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6743-7 [PMID: 20351258]
  13. Epidemiology. 2012 Jan;23(1):138-47 [PMID: 22157309]
  14. Drug Alcohol Depend. 2010 Jun 1;109(1-3):79-83 [PMID: 20060238]
  15. Addiction. 2011 Oct;106(10):1780-7; discussion 1788-9 [PMID: 21457169]
  16. PLoS One. 2014 Nov 25;9(11):e113711 [PMID: 25423343]
  17. Public Health Rep. 1998 Jun;113 Suppl 1:42-57 [PMID: 9722809]
  18. Sex Transm Infect. 2012 Oct;88(6):397-9 [PMID: 23012492]
  19. Eur J Public Health. 2011 Oct;21(5):613-9 [PMID: 20798184]
  20. Netw Sci (Camb Univ Press). 2014 Apr 1;2(1):107-131 [PMID: 25339990]
  21. PLoS One. 2013 Apr 10;8(4):e61006 [PMID: 23593375]
  22. Sociol Methodol. 2012 Aug 1;42(1):155-205 [PMID: 25339783]
  23. Stat Probab Lett. 2015 Nov 1;106:100-102 [PMID: 26327739]
  24. PLoS One. 2014 Oct 22;9(10):e108471 [PMID: 25338183]
  25. Biometrics. 2015 Mar;71(1):258-266 [PMID: 25585794]
  26. Eval Rev. 1998 Apr;22(2):289-308 [PMID: 10183307]
  27. Stat Med. 2009 Jul 30;28(17):2202-29 [PMID: 19572381]
  28. AIDS Behav. 2011 Jul;15(5):1003-10 [PMID: 20872063]
  29. Sociol Methodol. 2016 Aug;46(1):153-186 [PMID: 29375167]
  30. AIDS Care. 2010 Jun;22(6):784-92 [PMID: 20467937]
  31. AIDS Patient Care STDS. 2009 Oct;23(10):885-93 [PMID: 19803695]
  32. Sex Transm Infect. 2010 Dec;86 Suppl 2:ii11-5 [PMID: 21106509]

Grants

  1. S10 RR029676/NCRR NIH HHS
  2. KL2 TR000140/NCATS NIH HHS
  3. P30 MH062294/NIMH NIH HHS
  4. R01 DA014713/NIDA NIH HHS
  5. R01 DA029888/NIDA NIH HHS

Word Cloud

Created with Highcharts 10.0.0networkRDSsamplingauthordatamethodhiddensocialmodelrecruitmentdrugusersfocusedinferencepopulationprobabilitysampledmissingobservedshowsdistributiongraphRespondent-drivenchain-referralmembershard-to-reachpopulationssexworkershomelesspeoplevianetworksmethodologicalworkmeansassumptionsubjects'degreedeterminesCriticismexistingestimatorsusuallydata:underlyingpartiallydifficultdeterminecorrectprobabilitiesarticlecollectedordinarystudiescontaininformationstructurerespondents'constructscontinuous-timeincorporatestimeserieseventspatterncouponusedegreessubjectsTogetherplacewell-definedrecruitment-inducedsubgraphrespondentscaninterpretedexponentialrandomdevelopscomputationallyefficientestimatingvalidatesusingsimulatedappliestechniquestudyinjectionStPetersburgRussiaTHEGRAPHICALSTRUCTUREOFRESPONDENT-DRIVENSAMPLINGlinktracingrespondent-driven

Similar Articles

Cited By