Innate Immune Evasion by Human Respiratory RNA Viruses.

Marjolein Kikkert
Author Information
  1. Marjolein Kikkert: Department of Medical Microbiology, Leiden University Medical Center, Molecular Virology Laboratory, Leiden, The Netherlands, m.kikkert@lumc.nl.

Abstract

The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.

Keywords

References

  1. J Mol Biol. 2016 Aug 28;428(17):3467-82 [PMID: 27487481]
  2. Viruses. 2018 Sep 05;10(9): [PMID: 30189604]
  3. PLoS One. 2013 Aug 07;8(8):e71316 [PMID: 23951130]
  4. Mol Cell. 1998 Jun;1(7):991-1000 [PMID: 9651582]
  5. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5192-201 [PMID: 27519799]
  6. FEBS Lett. 2016 Aug;590(16):2797-810 [PMID: 27423063]
  7. Science. 2016 Apr 22;352(6284):aaf1098 [PMID: 27102489]
  8. Allergy. 2015 Aug;70(8):910-20 [PMID: 25858686]
  9. Front Cell Infect Microbiol. 2017 Aug 16;7:367 [PMID: 28861397]
  10. Front Immunol. 2017 Nov 14;8:1570 [PMID: 29184555]
  11. Front Immunol. 2017 Jan 03;7:662 [PMID: 28096803]
  12. Viruses. 2018 Dec 14;10(12): [PMID: 30558248]
  13. Viruses. 2017 Jan 23;9(1): [PMID: 28124995]
  14. J Immunol Res. 2018 Apr 30;2018:9480497 [PMID: 29854853]
  15. Cell Host Microbe. 2015 Mar 11;17(3):309-319 [PMID: 25704008]
  16. Viruses. 2015 Aug 28;7(9):4854-72 [PMID: 26343706]
  17. J Virol. 2015 Jun;89(12):6442-52 [PMID: 25855745]
  18. Viruses. 2014 Jul 22;6(7):2826-57 [PMID: 25054883]
  19. J Virol. 2009 Jul;83(14):7349-52 [PMID: 19403669]
  20. Paediatr Respir Rev. 2017 Sep;24:60-64 [PMID: 28159510]
  21. Cell. 2018 Nov 29;175(6):1634-1650.e17 [PMID: 30433869]
  22. Lancet. 2013 Apr 20;381(9875):1405-1416 [PMID: 23582727]
  23. Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4251-E4260 [PMID: 28484023]
  24. Viral Immunol. 2016 Jan-Feb;29(1):11-26 [PMID: 26679242]
  25. Sci Signal. 2010 Apr 20;3(118):jc2 [PMID: 20407122]
  26. Virus Res. 2014 Dec 19;194:124-37 [PMID: 25093995]
  27. J Virol. 2005 Apr;79(7):4550-1 [PMID: 15767458]
  28. J Virol. 2016 Jun 24;90(14):6453-6463 [PMID: 27147743]
  29. J Exp Med. 2016 Jan 11;213(1):1-13 [PMID: 26712804]
  30. mBio. 2014 May 20;5(3):e01174-14 [PMID: 24846384]
  31. J Gen Virol. 2004 Oct;85(Pt 10):2969-2979 [PMID: 15448360]
  32. Infect Chemother. 2013 Mar;45(1):11-21 [PMID: 24265946]
  33. J Allergy Clin Immunol. 2012 Aug;130(2):489-95 [PMID: 22766097]
  34. Curr Top Microbiol Immunol. 2015;386:121-47 [PMID: 25038940]
  35. Nat Microbiol. 2018 Nov;3(11):1234-1242 [PMID: 30224800]
  36. J Virol. 2010 Dec;84(23):12274-84 [PMID: 20844027]
  37. Virology. 2017 Nov;511:123-134 [PMID: 28843814]
  38. Front Immunol. 2014 Sep 29;5:466 [PMID: 25324843]
  39. Viruses. 2012 Sep;4(9):1438-76 [PMID: 23170167]
  40. Virus Res. 2011 Dec;162(1-2):80-99 [PMID: 21963675]
  41. Proc Am Thorac Soc. 2005;2(5):403-11 [PMID: 16322590]
  42. Virology. 1993 Jul;195(1):243-7 [PMID: 8317099]
  43. J Virol. 2015 Nov;89(21):10970-81 [PMID: 26311885]
  44. Expert Rev Respir Med. 2016 Jun;10(6):629-41 [PMID: 27088397]
  45. J Biol Chem. 2014 Dec 12;289(50):34667-82 [PMID: 25320088]
  46. Nat Med. 2006 Sep;12(9):1023-6 [PMID: 16906156]
  47. Biotechnol Genet Eng Rev. 2018 Apr;34(1):3-32 [PMID: 29742983]
  48. Nat Rev Immunol. 2017 Oct;17(10):647-660 [PMID: 28669985]
  49. Semin Immunopathol. 2016 Jul;38(4):471-82 [PMID: 26965109]
  50. Antiviral Res. 2015 Mar;115:21-38 [PMID: 25554382]
  51. Front Cell Infect Microbiol. 2017 Jun 13;7:252 [PMID: 28660175]
  52. FASEB J. 2012 Mar;26(3):1290-300 [PMID: 22106366]
  53. Annu Rev Microbiol. 2010;64:241-56 [PMID: 20825348]
  54. Front Immunol. 2017 Sep 29;8:1232 [PMID: 29033947]
  55. Nat Immunol. 2011 Feb;12(2):137-43 [PMID: 21217758]
  56. J Virol. 2012 Aug;86(15):8245-58 [PMID: 22623778]
  57. J Interferon Cytokine Res. 2017 Aug;37(8):331-341 [PMID: 28514196]
  58. J Leukoc Biol. 2018 Oct;104(4):729-735 [PMID: 30020539]
  59. Trends Immunol. 2016 Sep;37(9):588-596 [PMID: 27345728]
  60. J Virol. 2016 Nov 28;90(24):11032-11042 [PMID: 27681132]
  61. Curr Opin Microbiol. 2014 Aug;20:96-102 [PMID: 24930021]
  62. Front Immunol. 2018 Aug 02;9:1750 [PMID: 30116242]
  63. J Virol. 2012 Dec;86(24):13598-608 [PMID: 23035226]
  64. Nat Struct Mol Biol. 2009 Nov;16(11):1134-40 [PMID: 19838190]
  65. J Virol. 2016 Jan 13;90(7):3428-38 [PMID: 26763998]
  66. J Virol. 2012 Sep;86(17):9527-30 [PMID: 22740404]
  67. J Biol Chem. 2019 Apr 19;294(16):6430-6438 [PMID: 30804210]
  68. Viruses. 2016 May 12;8(5): [PMID: 27187445]
  69. J Pathol. 2015 Jan;235(2):185-95 [PMID: 25270030]
  70. Nature. 2009 Apr 16;458(7240):914-8 [PMID: 19194459]
  71. Vaccine. 2017 Jan 11;35(3):481-488 [PMID: 27686836]
  72. Pediatr Pulmonol. 2015 Jul;50(7):727-32 [PMID: 25847505]
  73. Virus Res. 2015 Apr 16;202:89-100 [PMID: 25432065]
  74. Antiviral Res. 2013 Dec;100(3):615-35 [PMID: 24129118]
  75. Virology. 2011 Apr 25;413(1):103-10 [PMID: 21377708]
  76. Cell. 2010 Feb 5;140(3):397-408 [PMID: 20144762]
  77. J Virol. 2019 Jan 4;93(2): [PMID: 30404792]
  78. J Virol. 2018 Sep 26;92(20): [PMID: 30068649]
  79. Immunity. 2017 May 16;46(5):875-890.e6 [PMID: 28514692]
  80. Nat Immunol. 2018 Aug;19(8):800-808 [PMID: 30026479]
  81. Curr Opin Virol. 2015 Jun;12:26-37 [PMID: 25765605]
  82. Proc Natl Acad Sci U S A. 1977 Jan;74(1):59-63 [PMID: 189316]
  83. Small GTPases. 2017 Oct 2;8(4):199-207 [PMID: 27428166]
  84. Lancet. 2015 Jan 31;385(9966):430-40 [PMID: 25280870]
  85. Vaccines (Basel). 2016 Jun 29;4(3): [PMID: 27367734]
  86. Virus Res. 2016 Jul 15;220:70-90 [PMID: 27071852]
  87. Cell Host Microbe. 2009 May 8;5(5):439-49 [PMID: 19454348]
  88. Viral Immunol. 2017 Jul/Aug;30(6):408-420 [PMID: 28609250]
  89. Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):E10157-E10166 [PMID: 30297408]
  90. mBio. 2016 Dec 6;7(6): [PMID: 27923923]
  91. Front Immunol. 2018 Mar 02;9:323 [PMID: 29552008]
  92. Virology. 2015 Aug;482:181-8 [PMID: 25880109]
  93. J Virol. 2011 Apr;85(8):3758-66 [PMID: 21307201]
  94. Adv Virus Res. 2016;96:219-243 [PMID: 27712625]
  95. Cell Host Microbe. 2007 Nov 15;2(5):295-305 [PMID: 18005751]
  96. Proc Natl Acad Sci U S A. 1977 Mar;74(3):961-5 [PMID: 191841]
  97. Trends Microbiol. 2018 Jul;26(7):598-610 [PMID: 29268982]
  98. Curr Top Microbiol Immunol. 2013;372:3-38 [PMID: 24362682]
  99. Virology. 2015 May;479-480:52-65 [PMID: 25753787]
  100. PLoS Pathog. 2014 Jul 10;10(7):e1004217 [PMID: 25010204]
  101. Cytokine. 2013 Sep;63(3):230-6 [PMID: 23764548]
  102. Cell Death Dis. 2018 Feb 15;9(3):272 [PMID: 29449668]
  103. Viruses. 2018 Sep 24;10(10): [PMID: 30249998]
  104. Front Immunol. 2018 Jan 05;8:1942 [PMID: 29354136]
  105. Immunology. 2019 Mar;156(3):217-227 [PMID: 30499584]
  106. J Virol. 1988 Aug;62(8):2636-43 [PMID: 2839690]
  107. J Biol Chem. 2015 Jan 30;290(5):3172-82 [PMID: 25505178]
  108. Trends Immunol. 2014 Sep;35(9):420-8 [PMID: 25153707]
  109. Chest. 2013 Dec;144(6):1906-1912 [PMID: 24297122]
  110. J Virol. 2010 May;84(10):5423-30 [PMID: 20219937]
  111. Front Immunol. 2016 Nov 11;7:498 [PMID: 27891131]
  112. Virology. 2017 Feb;502:33-38 [PMID: 27984784]
  113. Nature. 2009 Apr 16;458(7240):909-13 [PMID: 19194458]
  114. Science. 2014 Sep 26;345(6204):1250684 [PMID: 25258083]
  115. J Virol. 2012 Oct;86(20):11128-37 [PMID: 22855488]
  116. Nat Commun. 2018 Aug 10;9(1):3199 [PMID: 30097581]
  117. Viruses. 2016 Oct 24;8(10): [PMID: 27783058]
  118. FASEB J. 2012 Apr;26(4):1629-39 [PMID: 22202676]
  119. Cell. 2014 Dec 4;159(6):1365-76 [PMID: 25480299]
  120. Cell. 2018 Nov 29;175(6):1463-1465 [PMID: 30500533]
  121. Cell Res. 2015 Jul;25(7):771-84 [PMID: 26045163]
  122. Trends Immunol. 2018 Oct;39(10):848-858 [PMID: 30219309]
  123. PLoS Pathog. 2017 May 18;13(5):e1006372 [PMID: 28542609]
  124. mBio. 2014 Apr 01;5(2):e01107-13 [PMID: 24692638]
  125. Viruses. 2017 Dec 30;10(1): [PMID: 29301196]
  126. Viruses. 2018 Dec 12;10(12): [PMID: 30545063]
  127. Biochem Biophys Res Commun. 2017 Jan 22;482(4):1107-1113 [PMID: 27914808]
  128. J Virol. 2016 Sep 12;90(19):8389-94 [PMID: 27440898]
  129. Science. 2006 Nov 10;314(5801):997-1001 [PMID: 17038589]
  130. Science. 2012 Jul 13;337(6091):199-204 [PMID: 22745253]
  131. J Gen Virol. 2014 Dec;95(Pt 12):2594-2611 [PMID: 25182164]
  132. Front Immunol. 2018 Apr 12;9:743 [PMID: 29755452]
  133. Am J Physiol Lung Cell Mol Physiol. 2009 Oct;297(4):L559-67 [PMID: 19525387]
  134. Virus Res. 2014 Dec 19;194:191-9 [PMID: 25278144]
  135. J Cell Physiol. 2019 Mar;234(3):2143-2151 [PMID: 30146782]
  136. Cytokine Growth Factor Rev. 2017 Oct;37:17-27 [PMID: 28709747]
  137. PLoS Pathog. 2011 Dec;7(12):e1002433 [PMID: 22174690]
  138. Protein Cell. 2015 Oct;6(10):712-21 [PMID: 26206138]
  139. J Leukoc Biol. 2011 Feb;89(2):189-94 [PMID: 20682623]
  140. Nat Struct Mol Biol. 2018 Sep;25(9):778-786 [PMID: 30104661]
  141. J Virol. 2009 Nov;83(22):11581-7 [PMID: 19740998]
  142. PLoS Pathog. 2016 Oct 26;12(10):e1005982 [PMID: 27783669]
  143. Sci Rep. 2016 May 06;6:25454 [PMID: 27151171]
  144. Curr Opin Immunol. 2015 Oct;36:14-21 [PMID: 26026788]
  145. Int J Med Microbiol. 2018 Jan;308(1):237-245 [PMID: 29174633]
  146. Nat Rev Microbiol. 2016 Jun;14(6):360-73 [PMID: 27174148]
  147. Cell Host Microbe. 2017 Jul 12;22(1):74-85.e7 [PMID: 28669671]
  148. Nucleic Acids Res. 2015 Oct 30;43(19):9405-17 [PMID: 26384413]
  149. mBio. 2017 Nov 21;8(6): [PMID: 29162711]
  150. F1000Res. 2018 Aug 15;7:1299 [PMID: 30345031]
  151. Future Microbiol. 2010 Jan;5(1):23-41 [PMID: 20020828]
  152. Front Microbiol. 2017 Jun 16;8:1117 [PMID: 28670306]
  153. J Virol. 2017 Jan 3;91(2): [PMID: 27807226]
  154. J Virol. 2000 Oct;74(19):8953-65 [PMID: 10982339]
  155. J Virol. 2011 Oct;85(20):10874-83 [PMID: 21835805]
  156. J Virol. 2015 Dec 09;90(4):2090-101 [PMID: 26656704]
  157. Cell Physiol Biochem. 2018;51(1):173-185 [PMID: 30439714]
  158. Antivir Ther. 2007;12(4 Pt B):651-8 [PMID: 17944272]
  159. Viruses. 2016 Jan 15;8(1): [PMID: 26784219]
  160. PLoS Pathog. 2018 Feb 7;14(2):e1006901 [PMID: 29415027]
  161. PLoS One. 2012;7(3):e33174 [PMID: 22432004]
  162. Cell Discov. 2019 Jan 1;5:1 [PMID: 30603102]
  163. Cell Mol Immunol. 2017 Apr;14(4):331-338 [PMID: 28194022]
  164. Curr Opin Virol. 2018 Oct;32:9-14 [PMID: 30015014]
  165. Nat Immunol. 2003 Jan;4(1):63-8 [PMID: 12469119]
  166. Virol Sin. 2016 Feb;31(1):12-23 [PMID: 26786772]
  167. J Gen Virol. 2018 Aug;99(8):953-969 [PMID: 29939125]
  168. Nature. 2012 Jul 26;487(7408):486-90 [PMID: 22810585]
  169. PLoS Pathog. 2016 Feb 10;12(2):e1005444 [PMID: 26862753]
  170. Cell Tissue Res. 2018 Mar;371(3):505-516 [PMID: 29327081]
  171. Virus Res. 2017 Aug 15;240:81-86 [PMID: 28757142]
  172. EMBO J. 1999 Oct 15;18(20):5463-75 [PMID: 10523291]
  173. Curr Opin Virol. 2015 Apr;11:83-8 [PMID: 25829255]
  174. Nature. 1988 Jul 28;334(6180):320-5 [PMID: 2839775]
  175. Am J Respir Cell Mol Biol. 2004 Jun;30(6):893-900 [PMID: 14722224]
  176. J Innate Immun. 2017;9(2):111-125 [PMID: 28006777]
  177. Nat Immunol. 2003 Jan;4(1):69-77 [PMID: 12483210]
  178. Trends Microbiol. 2015 Mar;23(3):154-63 [PMID: 25572883]
  179. Curr Opin Virol. 2015 Jun;12:1-6 [PMID: 25638592]
  180. Sci Rep. 2018 Feb 27;8(1):3746 [PMID: 29487367]
  181. PLoS One. 2012;7(8):e43031 [PMID: 22912779]
  182. J Biol Chem. 1993 Sep 15;268(26):19200-3 [PMID: 8396129]
  183. Cytokine Growth Factor Rev. 2014 Oct;25(5):577-85 [PMID: 25086453]
  184. Antiviral Res. 2018 Jan;149:58-74 [PMID: 29128390]
  185. Virus Res. 2014 Dec 19;194:184-90 [PMID: 24512893]
  186. Viruses. 2018 Nov 16;10(11): [PMID: 30453478]
  187. Cytokine Growth Factor Rev. 2014 Dec;25(6):707-13 [PMID: 25001414]
  188. J Gen Virol. 1993 Mar;74 ( Pt 3):485-90 [PMID: 8445369]
  189. J Exp Med. 2005 Mar 21;201(6):937-47 [PMID: 15781584]
  190. Viruses. 2017 Dec 18;9(12): [PMID: 29258238]
  191. J Biochem. 2012 Jan;151(1):5-11 [PMID: 21890623]
  192. Sci Rep. 2018 Jan 25;8(1):1569 [PMID: 29371673]
  193. Int J Mol Sci. 2018 Feb 03;19(2): [PMID: 29401667]
  194. Virology. 2006 Jan 20;344(2):328-39 [PMID: 16216295]
  195. PLoS Pathog. 2017 Feb 3;13(2):e1006195 [PMID: 28158275]
  196. Viruses. 2019 Jan 17;11(1): [PMID: 30658390]

MeSH Term

Animals
Coronavirus
Coronavirus Infections
Host Microbial Interactions
Humans
Immunity, Innate
Respiratory Syncytial Virus Infections
Respiratory Syncytial Viruses
Signal Transduction
Virus Internalization
Virus Replication

Word Cloud

Created with Highcharts 10.0.0immuneviralinnaterespiratorywillvirusinfectionsvirusesevasionresponsesimmunityRNAdiseasesantiviralprovidesyncytialreviewknowledgehostincludingsuppressresponseoftendiscussedactivitiesmanipulationRespiratoryimpacthealthchildrenadultscansignificantYetcontrastchildhoodwellbacterialprophylacticvaccineseffectivetreatmentseitherstillavailablelimitedprotectionGivenwidespreadprevalencegenerallacknaturalsterilizingand/orhighmorbiditylethalityratescausedinfluenzacoronavirusesrhinovirusesdifficultsituationgenuinesocietalchallengethoroughunderstandingvirus-hostinteractionsprobablypivotalultimatelymeetchallengesattemptscomparativeoverviewimportantpartinteractionhost:armsraceManylistedgainwindowopportunityefficientreplicationsetting-upinfectionconsequenceshost'sincompletedelayeddiminisheddisplaysoverlystronginductiondelaymaycausetissuedamageaffectedalsoimpactssubsequentadaptivethereforeunderminesfullyprotectiverelevantgenomebrieflysummarizedbasedshieldingspeciesawaycellularsensorsdifferentanglesSubsequentlyenzymaticcausingshut-offstressgranuleformationFurthermoreprotease-mediatedubiquitinsystemaddressedFinallyperspectivesuserevieweddevelopmentnovelstrategiessketchedInnateImmuneEvasionHumanViruses2’O-methylationCoronavirusEndoribonucleaseGuanylate-bindingproteinsHRVIAVInterferonReplicationorganellesVaccine

Similar Articles

Cited By (208)