The G9a Histone Methyltransferase Inhibitor BIX-01294 Modulates Gene Expression during Gametocyte Development and Transmission.

Che Julius Ngwa, Meike Jutta Kiesow, Lindsey Marie Orchard, Afia Farrukh, Manuel Llinás, Gabriele Pradel
Author Information
  1. Che Julius Ngwa: Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany. ngwa.che@bio2.rwth-aachen.de.
  2. Meike Jutta Kiesow: Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany. kiesow@bio2.rwth-aachen.de.
  3. Lindsey Marie Orchard: Department of Biochemistry and Molecular Biology & Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA. lma20@psu.edu.
  4. Afia Farrukh: Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany. afiafarrukh10@gmail.com.
  5. Manuel Llinás: Department of Biochemistry and Molecular Biology & Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA. manuel@psu.edu. ORCID
  6. Gabriele Pradel: Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany. pradel@bio2.rwth-aachen.de.

Abstract

Transmission of the malaria parasite from the human to the mosquito is initiated by specialized sexual cells, the gametocytes. In the human, gametocytes are formed in response to stress signals and following uptake by a blood-feeding mosquito initiate sexual reproduction. Gametocytes need to fine-tune their gene expression in order to develop inside the mosquito to continue life-cycle progression. Previously, we showed that post-translational histone acetylation controls gene expression during gametocyte development and transmission. However, the role of histone methylation remains poorly understood. We here use the histone G9a methyltransferase inhibitor BIX-01294 to investigate the role of histone methylation in regulating gene expression in gametocytes. In vitro assays demonstrated that BIX-01294 inhibits intraerythrocytic replication with a half maximal inhibitory concentration () of 13.0 nM. Furthermore, BIX-01294 significantly impairs gametocyte maturation and reduces the formation of gametes and zygotes. Comparative transcriptomics between BIX-01294-treated and untreated immature, mature and activated gametocytes demonstrated greater than 1.5-fold deregulation of approximately 359 genes. The majority of these genes are transcriptionally downregulated in the activated gametocytes and could be assigned to transcription, translation, and signaling, indicating a contribution of histone methylations in mediating gametogenesis. Our combined data show that inhibitors of histone methylation may serve as a multi-stage antimalarial.

Keywords

References

  1. Int J Parasitol. 2008 Mar;38(3-4):327-40 [PMID: 17950739]
  2. Nature. 2014 Mar 13;507(7491):253-257 [PMID: 24572359]
  3. Genes Dev. 2002 Jul 15;16(14):1779-91 [PMID: 12130538]
  4. Int J Parasitol. 2010 Jan;40(1):109-21 [PMID: 19765590]
  5. Biol Lett. 2012 Apr 23;8(2):308-11 [PMID: 21937493]
  6. Cell Host Microbe. 2016 May 11;19(5):629-40 [PMID: 27173931]
  7. Nat Rev Genet. 2012 Apr 03;13(5):343-57 [PMID: 22473383]
  8. Antimicrob Agents Chemother. 2011 Apr;55(4):1338-48 [PMID: 21245445]
  9. Front Cell Infect Microbiol. 2017 Jul 24;7:320 [PMID: 28791254]
  10. Nature. 1981 Nov 26;294(5839):364-6 [PMID: 7031476]
  11. Am J Trop Med Hyg. 1998 Oct;59(4):505-8 [PMID: 9790418]
  12. Cell. 2005 Apr 8;121(1):25-36 [PMID: 15820676]
  13. Malar J. 2012 Jun 08;11:187 [PMID: 22681930]
  14. Cell Host Microbe. 2014 Aug 13;16(2):165-176 [PMID: 25121746]
  15. Cell Host Microbe. 2012 Jan 19;11(1):7-18 [PMID: 22264509]
  16. Trends Parasitol. 2008 Dec;24(12):551-6 [PMID: 18929512]
  17. PLoS Pathog. 2011 Feb;7(2):e1001292 [PMID: 21379342]
  18. BMC Genomics. 2013 Apr 15;14:256 [PMID: 23586929]
  19. Nature. 2014 Mar 13;507(7491):248-52 [PMID: 24572369]
  20. Mol Biochem Parasitol. 2007 Jul;154(1):119-23 [PMID: 17521751]
  21. PLoS Biol. 2009 Apr 14;7(4):e84 [PMID: 19402747]
  22. Curr Opin Microbiol. 2007 Dec;10(6):560-8 [PMID: 18024150]
  23. Nat Rev Microbiol. 2015 Sep;13(9):573-87 [PMID: 26272409]
  24. Mol Cell Biol. 2007 Aug;27(16):5711-24 [PMID: 17562855]
  25. Eukaryot Cell. 2007 Jul;6(7):1219-27 [PMID: 17449656]
  26. Nature. 2013 Jul 11;499(7457):223-7 [PMID: 23823717]
  27. Mol Microbiol. 2010 Nov;78(4):883-902 [PMID: 20807207]
  28. Nature. 2002 Oct 3;419(6906):498-511 [PMID: 12368864]
  29. BMC Genomics. 2011 Nov 30;12:587 [PMID: 22129310]
  30. Pharmacol Rep. 2014 Feb;66(1):107-13 [PMID: 24905315]
  31. Int J Parasitol. 2008 Aug;38(10):1083-97 [PMID: 18299133]
  32. J Parasitol. 1979 Jun;65(3):418-20 [PMID: 383936]
  33. Brief Funct Genomics. 2014 May;13(3):203-16 [PMID: 24326119]
  34. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16708-13 [PMID: 23011794]
  35. Biochem J. 2009 Jun 12;421(1):107-18 [PMID: 19344311]
  36. Curr Opin Microbiol. 2014 Aug;20:88-95 [PMID: 24945736]
  37. Antimicrob Agents Chemother. 2015 Feb;59(2):950-9 [PMID: 25421480]
  38. PLoS Pathog. 2010 Feb 12;6(2):e1000767 [PMID: 20169188]
  39. Mol Microbiol. 2007 Dec;66(6):1296-305 [PMID: 18028313]
  40. Cell Microbiol. 2016 Jul;18(7):905-18 [PMID: 27111866]
  41. PLoS Pathog. 2013;9(4):e1003268 [PMID: 23637595]
  42. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  43. PLoS Biol. 2003 Oct;1(1):E5 [PMID: 12929205]
  44. Eukaryot Cell. 2010 Aug;9(8):1138-49 [PMID: 20453074]
  45. Brief Funct Genomics. 2019 Sep 24;18(5):302-313 [PMID: 31220857]
  46. Sci Rep. 2016 Dec 09;6:38723 [PMID: 27934912]
  47. Mol Biochem Parasitol. 1999 Mar 15;99(1):11-9 [PMID: 10215020]
  48. Science. 2006 Aug 4;313(5787):667-9 [PMID: 16888139]
  49. Sci Rep. 2017 Apr 4;7(1):607 [PMID: 28377601]
  50. Cell Host Microbe. 2009 Feb 19;5(2):179-90 [PMID: 19218088]
  51. Cell. 2005 Apr 8;121(1):13-24 [PMID: 15820675]
  52. Biochimie. 2007 Jan;89(1):1-20 [PMID: 16919862]
  53. J Biomed Biotechnol. 2010;2010:976827 [PMID: 20111746]
  54. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9655-60 [PMID: 19497874]

Grants

  1. PR905/7-1/Deutsche Forschungsgemeinschaft

MeSH Term

Animals
Anopheles
Antimalarials
Azepines
Gene Expression Regulation, Developmental
Germ Cells
Histone-Lysine N-Methyltransferase
Humans
Malaria, Falciparum
Plasmodium falciparum
Quinazolines

Chemicals

Antimalarials
Azepines
BIX 01294
Quinazolines
Histone-Lysine N-Methyltransferase

Word Cloud

Created with Highcharts 10.0.0histonegametocytesgeneexpressionmethylationBIX-01294mosquitoTransmissionmalariahumansexualgametocytetransmissionroleG9ademonstratedactivatedgenesparasiteinitiatedspecializedcellsformedresponsestresssignalsfollowinguptakeblood-feedinginitiatereproductionGametocytesneedfine-tuneorderdevelopinsidecontinuelife-cycleprogressionPreviouslyshowedpost-translationalacetylationcontrolsdevelopmentHoweverremainspoorlyunderstoodusemethyltransferaseinhibitorinvestigateregulatingvitroassaysinhibitsintraerythrocyticreplicationhalfmaximalinhibitoryconcentration130nMFurthermoresignificantlyimpairsmaturationreducesformationgameteszygotesComparativetranscriptomicsBIX-01294-treateduntreatedimmaturematuregreater15-foldderegulationapproximately359majoritytranscriptionallydownregulatedassignedtranscriptiontranslationsignalingindicatingcontributionmethylationsmediatinggametogenesiscombineddatashowinhibitorsmayservemulti-stageantimalarialHistoneMethyltransferaseInhibitorModulatesGeneExpressionGametocyteDevelopment

Similar Articles

Cited By