Distribution and Restoration of Serotonin-Immunoreactive Paraneuronal Cells During Caudal Fin Regeneration in Zebrafish.

Désirée König, Paule Dagenais, Anita Senk, Valentin Djonov, Christof M Aegerter, Anna Jaźwińska
Author Information
  1. Désirée König: Department of Biology, University of Fribourg, Fribourg, Switzerland.
  2. Paule Dagenais: Physik-Institut, University of Zurich, Zurich, Switzerland.
  3. Anita Senk: Institute of Anatomy, University of Bern, Bern, Switzerland.
  4. Valentin Djonov: Institute of Anatomy, University of Bern, Bern, Switzerland.
  5. Christof M Aegerter: Physik-Institut, University of Zurich, Zurich, Switzerland.
  6. Anna Jaźwińska: Department of Biology, University of Fribourg, Fribourg, Switzerland.

Abstract

Aquatic vertebrates possess diverse types of sensory cells in their skin to detect stimuli in the water. In the adult zebrafish, a common model organism, the presence of such cells in fins has only rarely been studied. Here, we identified scattered serotonin (5-HT)-positive cells in the epidermis of the caudal fin. These cells were distinct from keratinocytes as revealed by their low immunoreactivity for cytokeratin and desmosome markers. Instead, they were detected by Calretinin (Calbindin-2) and Synaptic vesicle glycoprotein 2 (SV2) antibodies, indicating a calcium-regulated neurosecretory activity. Consistently, electron microscopy revealed abundant secretory organelles in desmosome-negative cells in the fin epidermis. Based on the markers, 5-HT, Calretinin and SV2, we referred to these cells as HCS-cells. We found that HCS-cells were spread throughout the entire caudal fin at an average density of 140 cells per mm on each fin surface. These cells were strongly enriched at ray bifurcations in wild type fins, as well as in elongated fins of mutant fish. To determine whether hydrodynamics play a role in the distribution of HCS-cells, we used an interdisciplinary approach and performed kinematic analysis. Measurements of particle velocity with a fin model revealed differences in fluid velocities between bifurcated rods and adjacent non-bifurcated regions. Therefore the accumulation of HCS-cells near bone bifurcations may be a biological adaptation for sensing of water parameters. The significance of this HCS-cell pattern is reinforced by the fact, that it is reestablished in the regenerated fin after amputation. Regeneration of HCS-cells was not impaired by the chemical inhibition of serotonin synthesis, suggesting that this neurotransmitter is not essential for the restorative process. In conclusion, our study identified a specific population of solitary paraneurons in the zebrafish fin, whose distribution correlates with fluid dynamics.

Keywords

References

  1. Mol Cell Neurosci. 2006 Oct;33(2):180-7 [PMID: 16949838]
  2. Anat Rec. 1989 Dec;225(4):267-71 [PMID: 2589641]
  3. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Sep;194(9):795-810 [PMID: 18709377]
  4. J Comp Neurol. 2006 Jan 20;494(3):435-59 [PMID: 16320255]
  5. PLoS One. 2010 Dec 31;5(12):e14483 [PMID: 21217817]
  6. Histochem J. 1994 Aug;26(8):609-29 [PMID: 7982786]
  7. Histochemistry. 1986;85(1):29-34 [PMID: 3525473]
  8. Dev Dyn. 2003 Feb;226(2):190-201 [PMID: 12557198]
  9. J Comp Neurol. 2007 Nov 20;505(3):302-13 [PMID: 17879273]
  10. Adv Anat Embryol Cell Biol. 2012;212:v, vii, 1-115 [PMID: 22894052]
  11. J Exp Med. 2017 Feb;214(2):529-545 [PMID: 28031476]
  12. Cell Tissue Res. 1977 Aug 9;182(2):235-46 [PMID: 198137]
  13. Appl Environ Microbiol. 1983 May;45(5):1651-8 [PMID: 6347064]
  14. Cold Spring Harb Perspect Biol. 2009 Aug;1(2):a002543 [PMID: 20066089]
  15. Anal Chem. 2010 Mar 1;82(5):1822-30 [PMID: 20148518]
  16. Methods Mol Biol. 2014;1211:125-38 [PMID: 25218382]
  17. Mol Pharmacol. 1967 May;3(3):274-8 [PMID: 6037686]
  18. FASEB J. 2015 Oct;29(10):4299-312 [PMID: 26148971]
  19. Front Cell Neurosci. 2015 Apr 21;9:131 [PMID: 25954154]
  20. Genes Dev. 2007 Sep 1;21(17):2118-30 [PMID: 17785522]
  21. Development. 2017 Aug 15;144(16):2889-2895 [PMID: 28811310]
  22. Acta Histochem. 2012 Feb;114(2):101-15 [PMID: 21477848]
  23. Dev Biol. 2018 Jan 15;433(2):416-432 [PMID: 28760345]
  24. J Neurosci. 2015 Dec 2;35(48):15984-95 [PMID: 26631478]
  25. Tissue Cell. 1997 Oct;29(5):533-47 [PMID: 9364803]
  26. Front Endocrinol (Lausanne). 2013 Sep 18;4:124 [PMID: 24065953]
  27. J Anat. 2018 May;232(5):783-805 [PMID: 29441573]
  28. Dev Dyn. 2009 Dec;238(12):2975-3015 [PMID: 19891001]
  29. J Exp Biol. 2008 Jul;211(Pt 13):2105-15 [PMID: 18552300]
  30. Arch Histol Cytol. 1989;52 Suppl:1-8 [PMID: 2510774]
  31. FASEB J. 2005 Feb;19(2):176-94 [PMID: 15677341]
  32. Dev Biol. 2006 Aug 15;296(2):450-7 [PMID: 16844108]
  33. Mol Cell Endocrinol. 2009 Aug 13;307(1-2):211-6 [PMID: 19409957]
  34. Development. 1996 Dec;123:241-54 [PMID: 9007244]
  35. Anat Rec. 1992 Jan;232(1):112-20 [PMID: 1536455]
  36. Dev Cell. 2014 Apr 28;29(2):139-45 [PMID: 24780734]
  37. Curr Opin Genet Dev. 2016 Oct;40:32-40 [PMID: 27266973]
  38. PLoS Genet. 2014 Jan;10(1):e1004080 [PMID: 24453984]
  39. Development. 2016 Jun 1;143(11):2012-24 [PMID: 27122167]
  40. Aquat Toxicol. 2009 Dec 13;95(4):307-19 [PMID: 19467721]
  41. J Exp Biol. 2001 Jan;204(Pt 1):81-102 [PMID: 11104713]
  42. Dev Biol. 2012 May 15;365(2):339-49 [PMID: 22426105]
  43. Front Neuroanat. 2014 Feb 05;8:3 [PMID: 24550787]
  44. Development. 2017 Jun 1;144(11):1926-1936 [PMID: 28559238]
  45. J Cell Biol. 1985 Apr;100(4):1284-94 [PMID: 2579958]
  46. Anat Rec A Discov Mol Cell Evol Biol. 2003 Mar;271(1):225-39 [PMID: 12552639]
  47. Wound Repair Regen. 2019 Jul;27(4):375-385 [PMID: 31017740]
  48. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4459-4464 [PMID: 28396411]
  49. Curr Biol. 2007 Aug 21;17(16):1390-5 [PMID: 17683938]
  50. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E1028-37 [PMID: 25691754]
  51. Development. 1990 Oct;110(2):491-504 [PMID: 1723944]
  52. Neurotoxicol Teratol. 2012 Jan-Feb;34(1):152-60 [PMID: 21893190]
  53. Regeneration (Oxf). 2015 May 19;2(2):72-83 [PMID: 27499869]
  54. J Exp Biol. 2015 Nov;218(Pt 21):3435-47 [PMID: 26347560]
  55. J Exp Biol. 2018 Feb 20;221(Pt 4): [PMID: 29246971]
  56. Proc Biol Sci. 2016 Feb 10;283(1824): [PMID: 26865307]
  57. Cell Tissue Res. 1984;235(3):695-7 [PMID: 6713497]
  58. Brain Res Bull. 2001 Nov 15;56(5):413-24 [PMID: 11750787]
  59. PeerJ. 2017 Nov 14;5:e4041 [PMID: 29158978]
  60. Trends Cell Biol. 2015 Feb;25(2):74-81 [PMID: 25480024]
  61. Front Cell Neurosci. 2017 Mar 13;11:74 [PMID: 28348520]
  62. J Exp Biol. 2013 Aug 15;216(Pt 16):3084-9 [PMID: 23885089]
  63. Annu Rev Med. 2009;60:355-66 [PMID: 19630576]
  64. J Exp Biol. 2012 Nov 15;215(Pt 22):3881-94 [PMID: 22855620]
  65. Nat Commun. 2013;4:1729 [PMID: 23591896]
  66. Trends Ecol Evol. 1996 Mar;11(3):110-4 [PMID: 21237776]
  67. Chem Senses. 1997 Apr;22(2):111-8 [PMID: 9146900]
  68. Trends Genet. 2015 Jun;31(6):336-43 [PMID: 25929514]

Word Cloud

Created with Highcharts 10.0.0cellsfinHCS-cellszebrafishfinsserotonin5-HTrevealedwatermodelidentifiedepidermiscaudalmarkersCalretininSV2raybifurcationshydrodynamicsdistributionfluidRegenerationAquaticvertebratespossessdiversetypessensoryskindetectstimuliadultcommonorganismpresencerarelystudiedscattered-positivedistinctkeratinocyteslowimmunoreactivitycytokeratindesmosomeInsteaddetectedCalbindin-2Synapticvesicleglycoprotein2antibodiesindicatingcalcium-regulatedneurosecretoryactivityConsistentlyelectronmicroscopyabundantsecretoryorganellesdesmosome-negativeBasedreferredfoundspreadthroughoutentireaveragedensity140permmsurfacestronglyenrichedwildtypewellelongatedmutantfishdeterminewhetherplayroleusedinterdisciplinaryapproachperformedkinematicanalysisMeasurementsparticlevelocitydifferencesvelocitiesbifurcatedrodsadjacentnon-bifurcatedregionsThereforeaccumulationnearbonemaybiologicaladaptationsensingparameterssignificanceHCS-cellpatternreinforcedfactreestablishedregeneratedamputationimpairedchemicalinhibitionsynthesissuggestingneurotransmitteressentialrestorativeprocessconclusionstudyspecificpopulationsolitaryparaneuronswhosecorrelatesdynamicsDistributionRestorationSerotonin-ImmunoreactiveParaneuronalCellsCaudalFinZebrafishcalretininparaneuronalbifurcationregeneration

Similar Articles

Cited By