Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy.

Lixue Shi, Fanghao Hu, Wei Min
Author Information
  1. Lixue Shi: Department of Chemistry, Columbia University, New York, NY, 10027, USA. ORCID
  2. Fanghao Hu: Department of Chemistry, Columbia University, New York, NY, 10027, USA. ORCID
  3. Wei Min: Department of Chemistry, Columbia University, New York, NY, 10027, USA. wm2256@columbia.edu. ORCID

Abstract

Water is arguably the most common and yet least understood material on Earth. Indeed, the biophysical behavior of Water in crowded intracellular milieu is a long-debated issue. Understanding of the spatial and compositional heterogeneity of Water inside cells remains elusive, largely due to a lack of proper Water-sensing tools with high sensitivity and spatial resolution. Recently, stimulated Raman excited fluorescence (SREF) microscopy was reported as the most sensitive vibrational imaging in the optical far field. Herein we develop SREF into a Water-sensing tool by coupling it with vibrational solvatochromism. This technique allows us to directly visualize spatially-resolved distribution of Water states inside single mammalian cells. Qualitatively, our result supports the concept of biological Water and reveals intracellular Water heterogeneity between nucleus and cytoplasm. Quantitatively, we unveil a compositional map of the Water pool inside living cells. Hence we hope SREF will be a promising tool to study intracellular Water and its relationship with cellular activities.

References

  1. J Phys Chem Lett. 2019 Jul 5;10(13):3563-3570 [PMID: 31185166]
  2. Biopolymers. 1986 Nov;25(11):2097-119 [PMID: 3790703]
  3. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6266-71 [PMID: 18436650]
  4. Magn Reson Med. 1995 Jun;33(6):790-4 [PMID: 7651115]
  5. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1577-82 [PMID: 11171993]
  6. Annu Rev Biophys Bioeng. 1974;3(0):95-126 [PMID: 4371481]
  7. J Phys Chem A. 2019 May 2;123(17):3928-3934 [PMID: 30957999]
  8. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  9. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  10. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  11. ACS Sens. 2019 Jul 26;4(7):1835-1843 [PMID: 31250628]
  12. J Am Chem Soc. 2012 Jun 27;134(25):10373-6 [PMID: 22694663]
  13. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  14. Nature. 2000 Apr 6;404(6778):604-9 [PMID: 10766243]
  15. Science. 2014 Dec 19;346(6216):1510-4 [PMID: 25525245]
  16. J Phys Chem B. 2016 May 5;120(17):4034-46 [PMID: 27090068]
  17. Chemphyschem. 2008 Dec 22;9(18):2677-85 [PMID: 18855966]
  18. Annu Rev Phys Chem. 2018 Apr 20;69:253-271 [PMID: 29677466]
  19. Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13327-13335 [PMID: 28592654]
  20. J Am Chem Soc. 2003 Jan 15;125(2):405-11 [PMID: 12517152]
  21. Annu Rev Phys Chem. 1997;48:213-42 [PMID: 9348658]
  22. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  23. J Phys Chem A. 2006 Mar 2;110(8):2601-6 [PMID: 16494368]
  24. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19334-9 [PMID: 19892742]
  25. J Phys Chem Lett. 2017 Nov 2;8(21):5241-5245 [PMID: 29022721]
  26. J Phys Chem B. 2018 Oct 4;122(39):9218-9224 [PMID: 30208710]
  27. Annu Rev Biochem. 2017 Jun 20;86:387-415 [PMID: 28375745]
  28. Chem Rev. 2008 Jan;108(1):74-108 [PMID: 18095715]
  29. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  30. Nat Commun. 2017 Oct 12;8(1):904 [PMID: 29026086]
  31. FEBS Lett. 2007 Oct 30;581(26):5094-8 [PMID: 17923125]
  32. Am J Physiol. 1996 Dec;271(6 Pt 1):C1895-900 [PMID: 8997190]
  33. Nat Rev Mol Cell Biol. 2006 Nov;7(11):861-6 [PMID: 16955076]
  34. Mol Biol Cell. 2013 Sep;24(17):2593-6 [PMID: 23989722]
  35. J Phys Chem Lett. 2015 Jul 2;6(13):2449-51 [PMID: 26266717]
  36. Biophys J. 2001 Jun;80(6):3019-24 [PMID: 11371474]
  37. Langmuir. 2013 Feb 19;29(7):2289-98 [PMID: 23336846]
  38. Acc Chem Res. 2015 Apr 21;48(4):998-1006 [PMID: 25799082]
  39. Nature. 2017 Jun 1;546(7656):162-167 [PMID: 28538724]
  40. J Chem Phys. 2011 Apr 21;134(15):154513 [PMID: 21513401]
  41. Chem Rev. 2013 Aug 14;113(8):5817-47 [PMID: 23679868]
  42. J Phys Chem B. 2012 Sep 20;116(37):11414-21 [PMID: 22931297]

Grants

  1. R01 GM128214/NIGMS NIH HHS
  2. R01 GM132860/NIGMS NIH HHS

MeSH Term

Cell Nucleus
Cell Physiological Phenomena
Color
Cytoplasm
HeLa Cells
Humans
Intracellular Space
Microscopy, Fluorescence
Nonlinear Optical Microscopy
Reproducibility of Results
Single-Cell Analysis
Solvents
Vibration
Water

Chemicals

Solvents
Water

Word Cloud

Created with Highcharts 10.0.0watercellsintracellularinsidespatialcompositionalheterogeneitywater-sensingstimulatedRamanexcitedfluorescenceSREFmicroscopyvibrationaltoolsinglebiologicalWaterarguablycommonyetleastunderstoodmaterialEarthIndeedthe biophysicalbehaviorcrowdedmilieulong-debatedissueUnderstandingremainselusivelargelyduea lackpropertoolshighsensitivityresolutionRecentlyreportedsensitiveimagingopticalfarfieldHereindevelopcouplingit withsolvatochromismtechniqueallowsusdirectlyvisualizespatially-resolveddistributionstatesmammalianQualitativelyresultsupportsconceptrevealsnucleuscytoplasmQuantitativelyunveilmapthe waterpoollivingHencehope SREFwillpromisingstudyrelationshipcellularactivitiesOpticalmappinglive

Similar Articles

Cited By (17)