Transcriptional analysis of insect extreme freeze tolerance.

Lauren E Des Marteaux, Petr Hůla, Vladimír Koštál
Author Information
  1. Lauren E Des Marteaux: Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.
  2. Petr Hůla: Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.
  3. Vladimír Koštál: Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.

Abstract

Few invertebrates can survive cryopreservation in liquid nitrogen, and the mechanisms by which some species do survive are underexplored, despite high application potential. Here, we turn to the drosophilid to strengthen our fundamental understanding of extreme freeze tolerance and gain insights about potential avenues for cryopreservation of biological materials. We first use RNAseq to generate transcriptomes of three larval phenotypic variants: those warm-acclimated in early or late diapause (weak capacity to survive cryopreservation), and those undergoing cold acclimation after diapause entry (extremely freeze tolerant, surviving cryopreservation). We identify mRNA transcripts representing genes and processes that accompany the physiological transition to extreme freeze tolerance and relate cryopreservation survival to the transcriptional profiles of select candidate genes using extended sampling of phenotypic variants. Enhanced capacity for protein folding, refolding and processing appears to be a central theme of extreme freeze tolerance and may allow cold-acclimated larvae to repair or eliminate proteins damaged by freezing (thus mitigating the toxicity of denatured proteins, endoplasmic reticulum stress and subsequent apoptosis). We also find a number of candidate genes (including both known and potentially novel, unannotated sequences) whose expression profiles tightly mirror the change in extreme freeze tolerance status among phenotypic variants.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.4693079

References

  1. Cell Mol Life Sci. 2006 Nov;63(22):2560-70 [PMID: 16952052]
  2. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14909-14 [PMID: 20668242]
  3. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  4. Methods Mol Biol. 2015;1257:21-82 [PMID: 25428002]
  5. J Exp Biol. 2015 Jun;218(Pt 12):1846-55 [PMID: 26085662]
  6. Methods Enzymol. 1985;114:49-77 [PMID: 4079776]
  7. Biochem J. 2005 May 15;388(Pt 1):151-7 [PMID: 15631617]
  8. Cell Stress Chaperones. 2001 Apr;6(2):126-35 [PMID: 11599574]
  9. Nat Commun. 2016 Dec 08;7:13821 [PMID: 27929117]
  10. Insect Biochem Mol Biol. 2013 Apr;43(4):352-65 [PMID: 23416132]
  11. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8532-8537 [PMID: 28720705]
  12. Genomics Proteomics Bioinformatics. 2017 Jun;15(3):177-186 [PMID: 28529100]
  13. Biol Rev Camb Philos Soc. 2018 Nov;93(4):1891-1914 [PMID: 29749114]
  14. Sci Rep. 2017 Aug 18;7(1):8807 [PMID: 28821771]
  15. BMC Genomics. 2015 Sep 21;16:720 [PMID: 26391666]
  16. Cryobiology. 2005 Aug;51(1):15-28 [PMID: 15963489]
  17. Mol Cell Biol. 1991 Dec;11(12):5937-44 [PMID: 1944271]
  18. J Exp Biol. 2018 Oct 31;221(Pt 21): [PMID: 30190314]
  19. Structure. 2016 Jul 6;24(7):1014-30 [PMID: 27345933]
  20. J Exp Biol. 2016 Apr;219(Pt 7):969-76 [PMID: 26823104]
  21. Physiol Rev. 1985 Oct;65(4):799-832 [PMID: 3903795]
  22. PLoS One. 2009 Dec 14;4(12):e8277 [PMID: 20011606]
  23. Pharm Dev Technol. 2007;12(5):505-23 [PMID: 17963151]
  24. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  25. J Insect Physiol. 2006 Nov-Dec;52(11-12):1226-33 [PMID: 17078965]
  26. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  27. PLoS One. 2012;7(2):e32606 [PMID: 22389713]
  28. J Insect Physiol. 2011 Aug;57(8):1115-22 [PMID: 21382374]
  29. Cryo Letters. 2004 Sep-Oct;25(5):307-10 [PMID: 15618982]
  30. Annu Rev Biochem. 2016 Jun 2;85:515-42 [PMID: 27145844]
  31. Insect Biochem Mol Biol. 2000 Jun;30(6):515-21 [PMID: 10802243]
  32. J Insect Physiol. 2018 Jan;104:15-24 [PMID: 29133228]
  33. J Mol Appl Genet. 1982;1(5):371-83 [PMID: 6818315]
  34. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13041-6 [PMID: 21788482]
  35. Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20859-64 [PMID: 23185012]
  36. Comp Biochem Physiol Part D Genomics Proteomics. 2017 Jun;22:78-89 [PMID: 28237864]
  37. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  38. Cryobiology. 1992 Feb;29(1):39-68 [PMID: 1606830]
  39. Biogerontology. 2016 Feb;17(1):61-70 [PMID: 26155908]
  40. J Insect Physiol. 2009 Mar;55(3):210-7 [PMID: 19100270]
  41. Mol Cell Biol. 1999 Mar;19(3):1720-30 [PMID: 10022859]
  42. EMBO Rep. 2001 Oct;2(10):885-90 [PMID: 11600451]
  43. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  44. Nature. 1990 May 10;345(6271):170-2 [PMID: 2110627]
  45. BMC Genomics. 2017 May 8;18(1):357 [PMID: 28482796]
  46. Genome Biol. 2010;11(8):R86 [PMID: 20738864]
  47. J Comp Physiol B. 2007 Oct;177(7):753-63 [PMID: 17576567]
  48. Sci Rep. 2016 Jun 30;6:28999 [PMID: 27357258]
  49. BMC Bioinformatics. 2009 May 27;10:161 [PMID: 19473525]
  50. Biochem Biophys Res Commun. 2001 Mar 2;281(3):611-3 [PMID: 11237700]
  51. Cryobiology. 2017 Jun;76:74-91 [PMID: 28428046]
  52. PLoS Genet. 2015 Jul 31;11(7):e1005400 [PMID: 26230084]
  53. J Insect Physiol. 1998 Jul;44(7-8):605-614 [PMID: 12769943]
  54. Annu Rev Physiol. 2011;73:115-34 [PMID: 21034219]
  55. Genetics. 2006 Jan;172(1):275-86 [PMID: 16204210]
  56. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  57. J Insect Physiol. 2000 Apr;46(4):417-428 [PMID: 12770205]
  58. Annu Rev Entomol. 2015 Jan 7;60:59-75 [PMID: 25341107]
  59. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  60. J Exp Biol. 2018 Apr 6;221(Pt 7): [PMID: 29496781]
  61. Bioinformatics. 2013 Jul 15;29(14):1830-1 [PMID: 23740750]
  62. Biophys J. 1986 Sep;50(3):423-30 [PMID: 3756295]
  63. J Exp Biol. 2012 Jul 15;215(Pt 14):2351-7 [PMID: 22723473]
  64. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  65. Biodynamica. 1951;7(133-136):77-84 [PMID: 14904500]
  66. Proc Biol Sci. 2019 Mar 27;286(1899):20190050 [PMID: 30890098]
  67. Aging Cell. 2016 Apr;15(2):217-26 [PMID: 26705243]
  68. Cell Stress Chaperones. 2003 Winter;8(4):303-8 [PMID: 15115282]
  69. BMC Ecol. 2016 Mar 22;16:11 [PMID: 27001084]
  70. Nat Biotechnol. 2014 Sep;32(9):896-902 [PMID: 25150836]
  71. J Biol Chem. 2005 Nov 18;280(46):38673-81 [PMID: 16169850]
  72. Naturwissenschaften. 2007 Oct;94(10):791-812 [PMID: 17479232]
  73. PLoS One. 2014 Jan 22;9(1):e86807 [PMID: 24466250]
  74. Cell Stress Chaperones. 2006 Spring;11(1):51-60 [PMID: 16572729]

MeSH Term

Acclimatization
Animals
Drosophilidae
Freezing
Insecta
Transcriptome

Word Cloud

Created with Highcharts 10.0.0cryopreservationfreezeextremetolerancesurvivephenotypicgenespotentialdiapausecapacitycoldacclimationprofilescandidatevariantsproteinsinsectinvertebratescanliquidnitrogenmechanismsspeciesunderexploreddespitehighapplicationturndrosophilidstrengthenfundamentalunderstandinggaininsightsavenuesbiologicalmaterialsfirstuseRNAseqgeneratetranscriptomesthreelarvalvariants:warm-acclimatedearlylateweakundergoingentryextremelytolerantsurvivingidentifymRNAtranscriptsrepresentingprocessesaccompanyphysiologicaltransitionrelatesurvivaltranscriptionalselectusingextendedsamplingEnhancedproteinfoldingrefoldingprocessingappearscentralthememayallowcold-acclimatedlarvaerepaireliminatedamagedfreezingthusmitigatingtoxicitydenaturedendoplasmicreticulumstresssubsequentapoptosisalsofindnumberincludingknownpotentiallynovelunannotatedsequenceswhoseexpressiontightlymirrorchangestatusamongTranscriptionalanalysiscryoprotectanttranscriptome

Similar Articles

Cited By