Relations between gross motor skills and executive functions, controlling for the role of information processing and lapses of attention in 8-10 year old children.

Irene M J van der Fels, Joanne Smith, Anne G M de Bruijn, Roel J Bosker, Marsh Königs, Jaap Oosterlaan, Chris Visscher, Esther Hartman
Author Information
  1. Irene M J van der Fels: University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands. ORCID
  2. Joanne Smith: University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.
  3. Anne G M de Bruijn: University of Groningen, Groningen Institute for Educational Research, Groningen, The Netherlands.
  4. Roel J Bosker: University of Groningen, Groningen Institute for Educational Research, Groningen, The Netherlands.
  5. Marsh Königs: Emma Children's Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Emma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, The Netherlands.
  6. Jaap Oosterlaan: Emma Children's Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Emma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, The Netherlands.
  7. Chris Visscher: University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.
  8. Esther Hartman: University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.

Abstract

This study aimed to systematically investigate the relation between gross motor skills and aspects of executive functioning (i.e. verbal working memory, visuospatial working memory, response inhibition and interference control) in 8-10 year old children. Additionally, the role of information processing (speed and variability) and lapses of attention in the relation between gross motor skills and executive functions was investigated. Data of 732 Dutch children from grade 3 and 4 were analyzed (50.0% boys, 50.4% grade 3, age = 9.16 ± 0.64 years). Gross motor skills were assessed using three items of the Körper Koordinationstest für Kinder and one item of the Bruininks-Oseretsky test of Motor Proficiency, Second Edition. Executive functions were assessed using the Wechsler Digit Span task (verbal working memory), the Visuospatial Memory task (visuospatial working memory), the Stop Signal task (response inhibition) and a modified version of the Flanker task (interference control). Information processing and lapses of attention were obtained by applying an ex-Gaussian analysis on go trials of the Stop Signal task. Multilevel regression analysis showed that gross motor skills were significantly related to verbal working memory, visuospatial working memory and response inhibition, but not to interference control. Lapses of attention was a significant predictor for all executive functions, whereas processing speed was not. Variability in processing speed was only predictive for visuospatial working memory. After controlling for information processing and lapses of attention, gross motor skills were only significantly related to visuospatial working memory and response inhibition. The results suggest that after controlling for information processing and lapses of attention, gross motor skills are related to aspects of executive functions that are most directly involved in, and share common underlying processes with, gross motor skills.

References

  1. Science. 1992 Jan 31;255(5044):556-9 [PMID: 1736359]
  2. J Neurosci. 1991 Mar;11(3):667-89 [PMID: 1705965]
  3. J Sci Med Sport. 2018 Aug;21(8):833-838 [PMID: 29358034]
  4. Dev Neuropsychol. 2001;20(3):653-69 [PMID: 12002099]
  5. Acta Psychol (Amst). 2004 Oct;117(2):155-83 [PMID: 15464012]
  6. Br J Psychol. 1995 May;86 ( Pt 2):253-69 [PMID: 7795944]
  7. Neuropsychologia. 2008 Nov;46(13):3030-41 [PMID: 18619477]
  8. Dev Sci. 2018 Mar;21(2): [PMID: 28557154]
  9. Child Dev. 2006 Nov-Dec;77(6):1698-716 [PMID: 17107455]
  10. Brain Behav Evol. 1978;15(3):185-234 [PMID: 99205]
  11. Hum Mov Sci. 2006 Feb;25(1):50-64 [PMID: 16442172]
  12. Dev Sci. 2009 Jan;12(1):175-81 [PMID: 19120425]
  13. Child Dev. 2005 Sep-Oct;76(5):1092-103 [PMID: 16150004]
  14. J Neurosci. 1997 Dec 15;17(24):9675-85 [PMID: 9391022]
  15. Child Dev. 2020 May;91(3):799-813 [PMID: 30791099]
  16. Exp Brain Res. 2013 Mar;225(2):187-96 [PMID: 23239198]
  17. J Sci Med Sport. 2015 Nov;18(6):697-703 [PMID: 25311901]
  18. J Child Psychol Psychiatry. 1998 Mar;39(3):411-25 [PMID: 9670096]
  19. Psychol Bull. 2000 Mar;126(2):220-46 [PMID: 10748641]
  20. Cogn Psychol. 1996 Jun;30(3):257-303 [PMID: 8660786]
  21. Annu Rev Psychol. 2013;64:135-68 [PMID: 23020641]
  22. Acta Psychol (Amst). 1994 Aug;86(2-3):199-225 [PMID: 7976467]
  23. Child Neuropsychol. 2012;18(6):576-85 [PMID: 22111593]
  24. Appl Neuropsychol. 2000;7(4):252-8 [PMID: 11296689]
  25. Dev Rev. 2009 Sep 1;29(3):180-200 [PMID: 20161467]
  26. Child Dev. 2000 Jan-Feb;71(1):44-56 [PMID: 10836557]
  27. Q J Exp Psychol A. 1994 May;47(2):465-80 [PMID: 8036271]
  28. Br J Health Psychol. 2009 May;14(Pt 2):275-302 [PMID: 18926008]
  29. Cogn Psychol. 2000 Aug;41(1):49-100 [PMID: 10945922]
  30. Phys Ther. 2015 Oct;95(10):1423-32 [PMID: 25929533]
  31. Trends Cogn Sci. 2008 Nov;12(11):418-24 [PMID: 18799345]
  32. Neural Plast. 2018 Apr 18;2018:9628787 [PMID: 29849576]
  33. Arch Clin Neuropsychol. 2004 Dec;19(8):1063-76 [PMID: 15533697]
  34. Acta Psychol (Amst). 2000 May;104(2):167-90 [PMID: 10900704]
  35. Psychol Sci. 2013 Oct;24(10):1906-17 [PMID: 23964000]
  36. Child Dev. 1990 Jun;61(3):653-63 [PMID: 2364741]
  37. Front Public Health. 2016 May 25;4:94 [PMID: 27252937]
  38. Q J Exp Psychol A. 1988 Aug;40(3):497-514 [PMID: 3175032]
  39. Front Psychol. 2016 Mar 11;7:349 [PMID: 27014155]
  40. Dev Neuropsychol. 2010;35(1):81-95 [PMID: 20390594]
  41. Dev Neuropsychol. 2001;20(1):385-406 [PMID: 11827095]
  42. J Cogn Neurosci. 2002 Apr 1;14(3):340-7 [PMID: 11970796]
  43. Brain Cogn. 2013 Feb;81(1):82-94 [PMID: 23174432]
  44. Child Dev. 2007 Mar-Apr;78(2):647-63 [PMID: 17381795]
  45. Percept Mot Skills. 2016 Feb;122(1):27-46 [PMID: 27420304]
  46. Med Sci Sports Exerc. 2016 Jun;48(6):1144-52 [PMID: 26765631]
  47. BMC Pediatr. 2011 May 11;11:34 [PMID: 21569343]
  48. J Sci Med Sport. 2018 May;21(5):501-507 [PMID: 29054748]
  49. Child Dev. 2013 Nov-Dec;84(6):1933-53 [PMID: 23550969]
  50. Nat Rev Neurosci. 2008 Apr;9(4):304-13 [PMID: 18319727]
  51. Dev Med Child Neurol. 2012 Nov;54(11):1025-31 [PMID: 22845862]
  52. Ann Sports Med Res. 2015 Jan 19;2(1):1011 [PMID: 26000340]
  53. J Int Neuropsychol Soc. 2009 May;15(3):331-43 [PMID: 19402919]
  54. Monatsschr Kinderheilkd (1902). 1970 Aug;118(8):473-9 [PMID: 5511840]
  55. Brain Cogn. 1992 Sep;20(1):8-23 [PMID: 1389124]
  56. Child Neuropsychol. 2004 Sep;10(3):155-61 [PMID: 15590494]

Grants

  1. PPO 15-410/HSRD VA

MeSH Term

Attention
Child
Child Development
Cognition
Executive Function
Female
Humans
Male
Memory, Short-Term
Motor Skills
Neuropsychological Tests

Word Cloud

Created with Highcharts 10.0.0motorskillsworkingmemorygrossprocessingattentionexecutivevisuospatiallapsesfunctionstaskresponseinhibitioninformationverbalinterferencecontrolchildrenspeedrelatedcontrollingrelationaspects8-10yearoldrolegrade350assessedusingStopSignalanalysissignificantlystudyaimedsystematicallyinvestigatefunctioningieAdditionallyvariabilityinvestigatedData732Dutch4analyzed0%boys4%age=916±064yearsGrossthreeitemsKörperKoordinationstestfürKinderoneitemBruininks-OseretskytestMotorProficiencySecondEditionExecutiveWechslerDigitSpanVisuospatialMemorymodifiedversionFlankerInformationobtainedapplyingex-GaussiangotrialsMultilevelregressionshowedLapsessignificantpredictorwhereasVariabilitypredictiveresultssuggestdirectlyinvolvedsharecommonunderlyingprocessesRelations

Similar Articles

Cited By