Synthetic hydrophobic peptides derived from MgtR weaken Salmonella pathogenicity and work with a different mode of action than endogenously produced peptides.

Mariana Rosas Olvera, Preeti Garai, Grégoire Mongin, Eric Vivès, Laila Gannoun-Zaki, Anne-Béatrice Blanc-Potard
Author Information
  1. Mariana Rosas Olvera: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, case 107, Place Eugène Bataillon, 34095, Montpellier cedex 5, France.
  2. Preeti Garai: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, case 107, Place Eugène Bataillon, 34095, Montpellier cedex 5, France.
  3. Grégoire Mongin: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, case 107, Place Eugène Bataillon, 34095, Montpellier cedex 5, France.
  4. Eric Vivès: CRBM, CNRS UMR 5237, 1919 route de Mende, 34293, Montpellier, France.
  5. Laila Gannoun-Zaki: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, case 107, Place Eugène Bataillon, 34095, Montpellier cedex 5, France.
  6. Anne-Béatrice Blanc-Potard: Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier, case 107, Place Eugène Bataillon, 34095, Montpellier cedex 5, France. anne.blanc-potard@umontpellier.fr.

Abstract

Due to the antibiotic resistance crisis, novel therapeutic strategies need to be developed against bacterial pathogens. Hydrophobic bacterial peptides (small proteins under 50 amino acids) have emerged as regulatory molecules that can interact with bacterial membrane proteins to modulate their activity and/or stability. Among them, the Salmonella MgtR peptide promotes the degradation of MgtC, a virulence factor involved in Salmonella intramacrophage replication, thus providing the basis for an antivirulence strategy. We demonstrate here that endogenous overproduction of MgtR reduced Salmonella replication inside macrophages and lowered MgtC protein level, whereas a peptide variant of MgtR (MgtR-S17I), which does not interact with MgtC, had no effect. We then used synthetic peptides to evaluate their action upon exogenous addition. Unexpectedly, upon addition of synthetic peptides, both MgtR and its variant MgtR-S17I reduced Salmonella intramacrophage replication and lowered MgtC and MgtB protein levels, suggesting a different mechanism of action of exogenously added peptides versus endogenously produced peptides. The synthetic peptides did not act by reducing bacterial viability. We next tested their effect on various recombinant proteins produced in Escherichia coli and showed that the level of several inner membrane proteins was strongly reduced upon addition of both peptides, whereas cytoplasmic or outer membrane proteins remained unaffected. Moreover, the α-helical structure of synthetic MgtR is important for its biological activity, whereas helix-helix interacting motif is dispensable. Cumulatively, these results provide perspectives for new antivirulence strategies with the use of peptides that act by reducing the level of inner membrane proteins, including virulence factors.

References

  1. Cell. 1991 Nov 1;67(3):581-9 [PMID: 1934062]
  2. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  3. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6 [PMID: 9576956]
  4. Future Microbiol. 2016;11(2):215-25 [PMID: 26849775]
  5. Infect Immun. 2006 Oct;74(10):5477-86 [PMID: 16988222]
  6. Mol Biosyst. 2016 Dec 20;13(1):23-31 [PMID: 27831584]
  7. Br J Clin Pharmacol. 2015 Feb;79(2):208-15 [PMID: 24552512]
  8. Front Cell Infect Microbiol. 2019 Apr 02;9:84 [PMID: 31001488]
  9. Anal Biochem. 2000 Dec 15;287(2):252-60 [PMID: 11112271]
  10. PLoS Pathog. 2014 Jul 31;10(7):e1004221 [PMID: 25079075]
  11. Mol Microbiol. 2007 Jan;63(2):605-22 [PMID: 17176255]
  12. Infect Immun. 2005 May;73(5):3160-3 [PMID: 15845525]
  13. Mol Microbiol. 2009 Apr;72(1):5-11 [PMID: 19210615]
  14. J Bacteriol. 2012 Nov;194(22):6255-63 [PMID: 22984256]
  15. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):E1409-18 [PMID: 24706874]
  16. Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):577-585 [PMID: 27580024]
  17. Curr Opin Microbiol. 2017 Oct;39:81-88 [PMID: 29111488]
  18. Front Cell Infect Microbiol. 2016 May 17;6:52 [PMID: 27242970]
  19. Biomolecules. 2018 Aug 22;8(3): [PMID: 30135402]
  20. Annu Rev Biochem. 2014;83:753-77 [PMID: 24606146]
  21. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16696-701 [PMID: 23010927]
  22. J Mol Biol. 2008 Apr 11;377(5):1433-42 [PMID: 18325532]
  23. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  24. Trends Microbiol. 2007 Jun;15(6):252-6 [PMID: 17416526]
  25. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5183-8 [PMID: 25848006]
  26. Mol Microbiol. 2008 Dec;70(6):1487-501 [PMID: 19121005]
  27. Biochim Biophys Acta. 2004 Nov 11;1694(1-3):81-95 [PMID: 15546659]
  28. EMBO Mol Med. 2009 Apr;1(1):37-49 [PMID: 20049702]
  29. Nat Microbiol. 2018 Mar;3(3):270-280 [PMID: 29463925]
  30. Mol Cell. 2017 Apr 20;66(2):234-246.e5 [PMID: 28431231]
  31. Infect Immun. 2006 Jul;74(7):3727-41 [PMID: 16790745]
  32. Mol Microbiol. 2010 May;76(4):1020-33 [PMID: 20398218]
  33. Microbiol Mol Biol Rev. 2012 Jun;76(2):311-30 [PMID: 22688815]
  34. Mol Cell. 2009 Jan 16;33(1):64-74 [PMID: 19150428]
  35. Cell. 2013 Jul 3;154(1):146-56 [PMID: 23827679]
  36. Curr Top Microbiol Immunol. 2016;398:147-183 [PMID: 26942418]
  37. EMBO J. 1997 Sep 1;16(17):5376-85 [PMID: 9311997]
  38. Elife. 2015 Oct 08;4: [PMID: 26447507]
  39. Mol Microbiol. 2012 Jul;85(2):299-313 [PMID: 22651704]
  40. Mol Microbiol. 2000 Mar;35(6):1375-82 [PMID: 10760138]
  41. Biotechniques. 1994 May;16(5):800-2 [PMID: 8068328]
  42. PLoS Pathog. 2015 Jun 16;11(6):e1004969 [PMID: 26080006]
  43. Mol Cell. 2012 Sep 28;47(6):897-908 [PMID: 22921935]
  44. Chembiochem. 2010 May 17;11(8):1083-92 [PMID: 20422669]
  45. EMBO J. 1985 Dec 1;4(12):3351-6 [PMID: 3004955]
  46. J Mol Biol. 2014 Jan 23;426(2):436-46 [PMID: 24140750]
  47. Biochem Biophys Res Commun. 2012 Jan 6;417(1):318-23 [PMID: 22155249]
  48. Front Cell Infect Microbiol. 2017 Apr 06;7:115 [PMID: 28428950]
  49. EcoSal Plus. 2017 Mar;7(2): [PMID: 28276312]
  50. J Bacteriol. 1992 Apr;174(7):2416-7 [PMID: 1551860]
  51. EMBO J. 2008 Feb 6;27(3):546-57 [PMID: 18200043]
  52. J Microbiol. 2015 Oct;53(10):667-72 [PMID: 26231375]

MeSH Term

Bacterial Proteins
Cation Transport Proteins
Escherichia coli
Gene Expression Regulation, Bacterial
Macrophages
Microbial Viability
Peptides
Salmonella typhimurium
Virulence
Virulence Factors

Chemicals

Bacterial Proteins
Cation Transport Proteins
Peptides
Virulence Factors
MgtC protein, Salmonella typhimurium

Word Cloud

Created with Highcharts 10.0.0peptidesproteinsMgtRSalmonellabacterialmembraneMgtCsyntheticreplicationreducedlevelwhereasactionuponadditionproducedstrategiesinteractactivitypeptidevirulenceintramacrophageantivirulenceloweredproteinvariantMgtR-S17IeffectdifferentendogenouslyactreducinginnerDueantibioticresistancecrisisnoveltherapeuticneeddevelopedpathogensHydrophobicsmall50aminoacidsemergedregulatorymoleculescanmodulateand/orstabilityAmongpromotesdegradationfactorinvolvedthusprovidingbasisstrategydemonstrateendogenousoverproductioninsidemacrophagesusedevaluateexogenousUnexpectedlyMgtBlevelssuggestingmechanismexogenouslyaddedversusviabilitynexttestedvariousrecombinantEscherichiacolishowedseveralstronglycytoplasmicouterremainedunaffectedMoreoverα-helicalstructureimportantbiologicalhelix-helixinteractingmotifdispensableCumulativelyresultsprovideperspectivesnewuseincludingfactorsSynthetichydrophobicderivedweakenpathogenicityworkmode

Similar Articles

Cited By