Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits.

Mahul Chakraborty, J J Emerson, Stuart J Macdonald, Anthony D Long
Author Information
  1. Mahul Chakraborty: Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA. mchakrab@uci.edu. ORCID
  2. J J Emerson: Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA. ORCID
  3. Stuart J Macdonald: Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA. ORCID
  4. Anthony D Long: Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA. tdlong@uci.edu. ORCID

Abstract

It has been hypothesized that individually-rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. Here we identified more than 20,000 euchromatic SVs from 14 Drosophila melanogaster genome assemblies, of which ~40% are invisible to high specificity short-read genotyping approaches. SVs are common, with 31.5% of diploid individuals harboring a SV in genes larger than 5kb, and 24% harboring multiple SVs in genes larger than 10kb. SV minor allele frequencies are rarer than amino acid polymorphisms, suggesting that SVs are more deleterious. We show that a number of functionally important genes harbor previously hidden structural variants likely to affect complex phenotypes. Furthermore, SVs are overrepresented in candidate genes associated with quantitative trait loci mapped using the Drosophila Synthetic Population Resource. We conclude that SVs are ubiquitous, frequently constitute a heterogeneous allelic series, and can act as rare alleles of large effect.

References

  1. Cell. 2010 Apr 16;141(2):210-7 [PMID: 20403315]
  2. Genome Biol. 2004;5(2):R12 [PMID: 14759262]
  3. Science. 2001 Apr 6;292(5514):107-10 [PMID: 11292875]
  4. Nat Rev Genet. 2009 Aug;10(8):565-77 [PMID: 19584810]
  5. Curr Biol. 2001 Feb 20;11(4):213-21 [PMID: 11250149]
  6. Genetica. 1996-1997;98(3):249-62 [PMID: 9204549]
  7. Nat Rev Genet. 2010 Jun;11(6):446-50 [PMID: 20479774]
  8. Dokl Biochem Biophys. 2015;461:135-8 [PMID: 25937233]
  9. Eur J Clin Invest. 2011 May;41(5):561-7 [PMID: 21155765]
  10. Genome Res. 2017 May;27(5):677-685 [PMID: 27895111]
  11. Nature. 2010 Apr 1;464(7289):704-12 [PMID: 19812545]
  12. PLoS One. 2015 Jul 15;10(7):e0132184 [PMID: 26176952]
  13. G3 (Bethesda). 2018 Oct 3;8(10):3143-3154 [PMID: 30018084]
  14. Nature. 2015 Oct 1;526(7571):75-81 [PMID: 26432246]
  15. Mol Biol Evol. 2013 Oct;30(10):2311-27 [PMID: 23883524]
  16. PLoS Genet. 2010 Jun 24;6(6):e1000998 [PMID: 20585622]
  17. Genetics. 2014 Sep;198(1):45-57 [PMID: 25236448]
  18. Science. 2002 Sep 27;297(5590):2253-6 [PMID: 12351787]
  19. Science. 2007 Jun 15;316(5831):1586-91 [PMID: 17569856]
  20. Genetics. 1997 May;146(1):295-307 [PMID: 9136019]
  21. Philos Trans R Soc Lond B Biol Sci. 2005 Jul 29;360(1459):1411-25 [PMID: 16048784]
  22. Science. 2010 Dec 24;330(6012):1787-97 [PMID: 21177974]
  23. Trends Biotechnol. 2009 Sep;27(9):522-30 [PMID: 19679362]
  24. Genetics. 2017 Jun;206(2):587-602 [PMID: 28592498]
  25. Nucleic Acids Res. 2016 Nov 2;44(19):e147 [PMID: 27458204]
  26. Genetics. 2019 Jan;211(1):333-348 [PMID: 30420487]
  27. Nature. 2011 Mar 24;471(7339):527-31 [PMID: 21430782]
  28. PLoS Genet. 2014 May 08;10(5):e1004322 [PMID: 24810915]
  29. Theor Popul Biol. 1984 Apr;25(2):138-93 [PMID: 6729751]
  30. Gene. 2006 Sep 1;379:26-32 [PMID: 16824706]
  31. Proc Natl Acad Sci U S A. 2005 May 31;102(22):7882-7 [PMID: 15905331]
  32. Trends Genet. 2014 Nov;30(11):488-95 [PMID: 25175100]
  33. Nature. 2012 Feb 08;482(7384):173-8 [PMID: 22318601]
  34. Bioinformatics. 2015 Oct 1;31(19):3207-9 [PMID: 26040454]
  35. Nat Genet. 2014 Mar;46(3):220-4 [PMID: 24509481]
  36. Genome Res. 2010 Apr;20(4):537-45 [PMID: 20150320]
  37. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  38. Genome Res. 2012 Aug;22(8):1558-66 [PMID: 22496517]
  39. Nat Biotechnol. 2008 Oct;26(10):1135-45 [PMID: 18846087]
  40. PLoS Genet. 2012;8(12):e1003080 [PMID: 23284287]
  41. Genome Res. 2012 Nov;22(11):2188-98 [PMID: 22767387]
  42. Nat Rev Genet. 2011 Jun 17;12(7):499-510 [PMID: 21681211]
  43. Toxicol Sci. 2009 Feb;107(2):416-26 [PMID: 18779381]
  44. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  45. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  46. Am J Hum Genet. 2001 Jul;69(1):124-37 [PMID: 11404818]
  47. Nature. 2005 Oct 20;437(7062):1149-52 [PMID: 16237443]
  48. Mol Biol Evol. 2014 Jul;31(7):1750-66 [PMID: 24710518]
  49. Nucleic Acids Res. 2015 Jan;43(Database issue):D690-7 [PMID: 25398896]
  50. PLoS Genet. 2014 May 29;10(5):e1004379 [PMID: 24875776]
  51. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  52. Genome Res. 2002 Jun;12(6):996-1006 [PMID: 12045153]
  53. Nat Rev Genet. 2009 Jun;10(6):381-91 [PMID: 19448663]
  54. Science. 2008 Jun 20;320(5883):1629-31 [PMID: 18535209]
  55. Nat Genet. 2018 Jan;50(1):20-25 [PMID: 29255259]
  56. Genome Res. 2015 Mar;25(3):445-58 [PMID: 25589440]
  57. Genetics. 2011 Feb;187(2):367-83 [PMID: 21115973]
  58. Mol Cell Endocrinol. 2009 Feb 5;299(1):39-50 [PMID: 18682271]
  59. PLoS Genet. 2013;9(2):e1003258 [PMID: 23437004]
  60. PLoS Genet. 2009 May;5(5):e1000477 [PMID: 19492015]
  61. G3 (Bethesda). 2014 Nov 11;5(1):49-59 [PMID: 25387828]
  62. Bioinformatics. 2009 Nov 1;25(21):2865-71 [PMID: 19561018]
  63. Genome Res. 2017 May;27(5):709-721 [PMID: 28373483]
  64. Nature. 2011 Mar 24;471(7339):473-9 [PMID: 21179090]
  65. Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34 [PMID: 25199790]
  66. Sci Rep. 2016 Aug 30;6:31900 [PMID: 27573208]
  67. Genetics. 2015 Apr;199(4):1229-41 [PMID: 25631317]
  68. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  69. Genome Res. 2011 Jun;21(6):974-84 [PMID: 21324876]
  70. Nat Rev Genet. 2001 May;2(5):370-81 [PMID: 11331903]
  71. Development. 2016 Oct 1;143(19):3591-3603 [PMID: 27702787]
  72. Nature. 2009 Oct 8;461(7265):747-53 [PMID: 19812666]
  73. Nat Rev Genet. 2011 May;12(5):363-76 [PMID: 21358748]
  74. Evolution. 2014 Dec;68(12):3395-409 [PMID: 25319083]
  75. Genetics. 2016 Apr;202(4):1251-4 [PMID: 27053122]
  76. Nat Rev Genet. 2009 Apr;10(4):241-51 [PMID: 19293820]
  77. Genetics. 1989 Nov;123(3):585-95 [PMID: 2513255]
  78. Mol Biol Evol. 2018 Mar 1;35(3):543-548 [PMID: 29220515]
  79. Genetics. 1991 Oct;129(2):555-62 [PMID: 1743491]
  80. Mol Ecol. 2010 Feb;19(4):760-74 [PMID: 20074316]

Grants

  1. K99 GM129411/NIGMS NIH HHS
  2. R01 GM115562/NIGMS NIH HHS
  3. R01 GM123303/NIGMS NIH HHS
  4. R01 OD010974/NIH HHS

MeSH Term

Animals
Drosophila melanogaster
Euchromatin
Female
Gene Expression Profiling
Gene Frequency
Genomic Structural Variation
Phenotype
Quantitative Trait Loci

Chemicals

Euchromatin

Word Cloud

Created with Highcharts 10.0.0SVsgenesvariantscomplexhiddenstructuralvariationtraitsDrosophilaharboringSVlargerallelichypothesizedindividually-rareaccountsignificantfractionidentified20000euchromatic14melanogastergenomeassemblies~40%invisiblehighspecificityshort-readgenotypingapproachescommon315%diploidindividuals5kb24%multiple10kbminorallelefrequenciesrareraminoacidpolymorphismssuggestingdeleteriousshownumberfunctionallyimportantharborpreviouslylikelyaffectphenotypesFurthermoreoverrepresentedcandidateassociatedquantitativetraitlocimappedusingSyntheticPopulationResourceconcludeubiquitousfrequentlyconstituteheterogeneousseriescanactrarealleleslargeeffectStructuralexhibitwidespreadheterogeneityshape

Similar Articles

Cited By (92)