Sensitivity analysis and estimation using a hierarchical Bayesian method for the parameters of the FvCB biochemical photosynthetic model.

Tuo Han, Gaofeng Zhu, Jinzhu Ma, Shangtao Wang, Kun Zhang, Xiaowen Liu, Ting Ma, Shasha Shang, Chunlin Huang
Author Information
  1. Tuo Han: Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China. ORCID
  2. Gaofeng Zhu: Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China. zhugf@lzu.edu.cn. ORCID
  3. Jinzhu Ma: Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China.
  4. Shangtao Wang: Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China.
  5. Kun Zhang: Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China.
  6. Xiaowen Liu: Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China.
  7. Ting Ma: Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China.
  8. Shasha Shang: Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China.
  9. Chunlin Huang: Key Laboratory of Remote Sensing of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China.

Abstract

Photosynthesis is a major process included in land surface models. Accurately estimating the parameters of the photosynthetic sub-models can greatly improve the ability of these models to accurately simulate the carbon cycle of terrestrial ecosystems. Here, we used a hierarchical Bayesian approach to fit the Farquhar-von Caemmerer-Berry model, which is based on the biochemistry of photosynthesis using 236 curves for the relationship between net CO assimilation and changes in the intercellular CO concentration. An advantage of the hierarchical Bayesian algorithm is that parameters can be estimated at multiple levels (plant, species, plant functional type, and population level) simultaneously. The parameters of the hierarchical strategy were based on the results of a sensitivity analysis. The Michaelis-Menten constant (K), enthalpies of activation (E and E), and two optical parameters (θ and α) demonstrated considerable variation at different levels, which suggests that this variation cannot be ignored. The maximum electron transport rate (J), maximum rate of Rubisco activity (V), and dark respiration in the light (R) were higher for broad-leaved plants than for needle-leaved plants. Comparison of the model's simulated outputs with observed data showed strong and significant positive correlations, particularly when the model was parameterized at the plant level. In summary, our study is the first effort to combine sensitivity analysis and hierarchical Bayesian parameter estimation. The resulting realistic parameter distributions for the four levels provide a reference for current and future land surface models. Furthermore, the observed variation in the parameters will require attention when using photosynthetic parameters in future models.

Keywords

References

  1. J Exp Bot. 2013 May;64(8):2269-81 [PMID: 23564954]
  2. Plant Physiol. 2016 Aug;171(4):2549-61 [PMID: 27329223]
  3. New Phytol. 2017 Jan;213(1):22-42 [PMID: 27891647]
  4. Plant Cell Environ. 2008 May;31(5):602-21 [PMID: 17996013]
  5. New Phytol. 2007;176(2):402-14 [PMID: 17888119]
  6. Photosynth Res. 2014 Feb;119(1-2):89-100 [PMID: 23812760]
  7. Oecologia. 1989 Jan;78(1):9-19 [PMID: 28311896]
  8. Planta. 1981 Dec;153(4):376-87 [PMID: 24276943]
  9. Plant Cell Environ. 2009 Feb;32(2):109-22 [PMID: 19154228]
  10. Plant Cell Environ. 2007 Sep;30(9):1035-40 [PMID: 17661745]
  11. Plant Cell Environ. 2013 Dec;36(12):2108-19 [PMID: 23869820]
  12. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51 [PMID: 16641091]
  13. New Phytol. 2016 May;210(3):1130-44 [PMID: 26719951]
  14. Plant Physiol. 2002 Dec;130(4):1992-8 [PMID: 12481082]
  15. J Exp Bot. 2003 Nov;54(392):2393-401 [PMID: 14512377]
  16. Ann Bot. 2014 Jul;114(1):1-16 [PMID: 24793697]
  17. Science. 1997 Jan 24;275(5299):502-9 [PMID: 8999789]
  18. Plant Physiol. 2016 Oct;172(2):707-717 [PMID: 27342312]
  19. Plant Physiol. 2011 Jan;155(1):125-9 [PMID: 20959423]
  20. J Exp Bot. 2006;57(2):291-302 [PMID: 16364948]
  21. Tree Physiol. 2011 Feb;31(2):178-95 [PMID: 21411434]
  22. New Phytol. 2015 Apr;206(2):614-36 [PMID: 25581061]
  23. Oecologia. 1986 Oct;70(3):393-401 [PMID: 28311926]
  24. Plant Cell Environ. 2009 Dec;32(12):1695-709 [PMID: 19671098]
  25. Nat Biotechnol. 2011 Dec 11;30(1):105-11 [PMID: 22158310]
  26. New Phytol. 2005 May;166(2):485-96 [PMID: 15819912]
  27. New Phytol. 2013 Dec;200(4):1132-44 [PMID: 23952643]
  28. Glob Chang Biol. 2018 Dec;24(12):5708-5723 [PMID: 30218538]
  29. Plant Cell Environ. 2015 Jun;38(6):1142-56 [PMID: 25311401]
  30. Planta. 1984 Jun;161(4):308-13 [PMID: 24253719]
  31. Plant Cell Environ. 2007 Sep;30(9):1176-90 [PMID: 17661754]
  32. Plant Cell Environ. 2009 Dec;32(12):1710-23 [PMID: 19703116]
  33. Science. 2005 Jun 3;308(5727):1431-5 [PMID: 15860591]
  34. Planta. 1980 Jun;149(1):78-90 [PMID: 24306196]
  35. Photosynth Res. 1991 Mar;27(3):169-78 [PMID: 24414689]
  36. Plant Cell Environ. 2014 Sep;37(9):1989-2001 [PMID: 24689692]

Grants

  1. nos. 41871078/National Natural Science Foundation of China (CN)
  2. nos. 41571016/National Natural Science Foundation of China (CN)
  3. nos. 862851/Fundamental Research Funds for the Central Universities
  4. No. XDA19040500/Strategic Priority Research Program of Chinese Academy of Sciences
  5. No. 2016YFC0501002/National Key R & D Program of China

MeSH Term

Bayes Theorem
Carbon Dioxide
Computer Simulation
Confidence Intervals
Electron Transport
Models, Biological
Photosynthesis
Regression Analysis

Chemicals

Carbon Dioxide

Word Cloud

Created with Highcharts 10.0.0parametershierarchicalBayesianlevelanalysismodelsmodelphotosyntheticusinglevelsplantvariationPhotosynthesislandsurfacecanbasedCOfunctionaltypesensitivityEmaximumrateplantsobservedparameterestimationfutureSensitivityFvCBPlantmajorprocessincludedAccuratelyestimatingsub-modelsgreatlyimproveabilityaccuratelysimulatecarboncycleterrestrialecosystemsusedapproachfitFarquhar-vonCaemmerer-Berrybiochemistryphotosynthesis236curvesrelationshipnetassimilationchangesintercellularconcentrationadvantagealgorithmestimatedmultiplespeciespopulationsimultaneouslystrategyresultsMichaelis-MentenconstantKenthalpiesactivationtwoopticalθαdemonstratedconsiderabledifferentsuggestsignoredelectrontransportJRubiscoactivityVdarkrespirationlightRhigherbroad-leavedneedle-leavedComparisonmodel'ssimulatedoutputsdatashowedstrongsignificantpositivecorrelationsparticularlyparameterizedsummarystudyfirsteffortcombineresultingrealisticdistributionsfourprovidereferencecurrentFurthermorewillrequireattentionmethodbiochemicalHierarchicalLSMsSpecies

Similar Articles

Cited By