A Multiscale Model for Recruitment Aggregation of Platelets by Correlating with Results.

Prachi Gupta, Peng Zhang, Jawaad Sheriff, Danny Bluestein, Yuefan Deng
Author Information
  1. Prachi Gupta: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600 USA.
  2. Peng Zhang: Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA.
  3. Jawaad Sheriff: Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA.
  4. Danny Bluestein: Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA.
  5. Yuefan Deng: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600 USA.

Abstract

INTRODUCTION: We developed a multiscale model to simulate the dynamics of platelet aggregation by recruitment of unactivated platelets flowing in viscous shear flows by an activated platelet deposited onto a blood vessel wall. This model uses coarse grained molecular dynamics (CGMD) for platelets at the microscale and dissipative particle dynamics (DPD) for the shear flow at the macroscale. Under conditions of relatively low shear, aggregation is mediated by fibrinogen via αIIbβ3 receptors.
METHODS: The binding of αIIbβ3 and fibrinogen is modeled by a molecular-level hybrid force field consisting of Morse potential and Hooke law for the nonbonded and bonded interactions, respectively. The force field, parametrized in two different interaction scales, is calculated by correlating with the platelet contact area measured and the detaching force between αIIbβ3 and fibrinogen.
RESULTS: Using our model, we derived, the relationship between recruitment force and distance between the centers of mass of two platelets, by integrating the molecular-scale inter-platelet interactions during recruitment aggregation in shear flows. Our model indicates that assuming a rigid-platelet model, underestimates the contact area by 89% and the detaching force by 93% as compared to a model that takes into account the platelet deformability leading to a prediction of a significantly lower attachment during recruitment.
CONCLUSIONS: The molecular-level predictive capability of our model sheds a light on differences observed between transient and permanent platelet aggregation patterns. The model and simulation framework can be further adapted to simulate initial thrombus formation involving multiple flowing platelets as well as deposition and adhesion onto blood vessels.

Keywords

References

  1. Biochem J. 1993 Jun 15;292 ( Pt 3):749-58 [PMID: 7686366]
  2. Biophys J. 2008 Sep;95(5):2539-55 [PMID: 18515387]
  3. PLoS One. 2012;7(3):e32463 [PMID: 22396768]
  4. Ann Biomed Eng. 1998 Mar-Apr;26(2):268-77 [PMID: 9525767]
  5. Circulation. 2018 Mar 20;137(12):e67-e492 [PMID: 29386200]
  6. J Biol Chem. 1992 Aug 15;267(23):16637-43 [PMID: 1644841]
  7. Thromb Haemost. 2010 Dec;104(6):1281-4 [PMID: 20886193]
  8. Biophys J. 1993 Jul;65(1):354-61 [PMID: 8369443]
  9. Biophys J. 1993 Jul;65(1):344-53 [PMID: 8369442]
  10. J Biol Chem. 2016 Apr 8;291(15):7858-67 [PMID: 26867579]
  11. J Thromb Haemost. 2009 Jul;7 Suppl 1:17-20 [PMID: 19630759]
  12. Int J Numer Method Biomed Eng. 2015 Mar;31(3):e02702 [PMID: 25532469]
  13. J Biomech. 2017 Jan 4;50:26-33 [PMID: 27894676]
  14. Math Med Biol. 2011 Mar;28(1):47-84 [PMID: 20439306]
  15. Biomech Model Mechanobiol. 2004 Mar;2(3):157-67 [PMID: 14685822]
  16. Cell Mol Bioeng. 2014 Dec 1;7(4):552-574 [PMID: 25530818]
  17. Ann Biomed Eng. 2013 Jun;41(6):1279-96 [PMID: 23400312]
  18. Biophys J. 1993 Jul;65(1):334-43 [PMID: 8369441]
  19. Platelets. 1996;7(1-2):9-21 [PMID: 21043648]
  20. J Thromb Haemost. 2003 Jul;1(7):1335-42 [PMID: 12871266]
  21. Blood Rev. 2015 Nov;29(6):377-86 [PMID: 26005062]
  22. Lab Chip. 2010 Apr 21;10(8):991-8 [PMID: 20358105]
  23. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17164-9 [PMID: 17085579]
  24. Blood. 2007 Jan 15;109(2):566-76 [PMID: 16990596]
  25. Blood. 2006 Sep 15;108(6):1903-10 [PMID: 16772609]
  26. Nat Med. 2009 Jun;15(6):665-73 [PMID: 19465929]
  27. Ann Biomed Eng. 2013 Nov;41(11):2318-33 [PMID: 23695489]
  28. J Biomech. 2008;41(1):47-55 [PMID: 17888442]
  29. Nature. 2001 Nov 29;414(6863):503-4 [PMID: 11734837]
  30. IEEE Eng Med Biol Mag. 2009 Mar-Apr;28(2):32-7 [PMID: 19349249]
  31. J Atheroscler Thromb. 2016;23(4):455-64 [PMID: 26581184]
  32. PLoS Comput Biol. 2017 Jan 17;13(1):e1005291 [PMID: 28095402]
  33. Biophys J. 2008 Sep;95(5):2556-74 [PMID: 18515386]
  34. IUBMB Life. 2012 Jun;64(6):465-72 [PMID: 22550017]
  35. J Biol Chem. 1985 Sep 5;260(19):10698-707 [PMID: 2993285]
  36. Blood. 2007 Jun 15;109(12):5087-95 [PMID: 17311994]
  37. Biophys J. 2000 Mar;78(3):1195-206 [PMID: 10692309]

Grants

  1. R21 HL096930/NHLBI NIH HHS
  2. U01 HL131052/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0modelforceplateletaggregationrecruitmentplateletssheardynamicsfibrinogenαIIbβ3fieldcontactareadetachingmultiscalesimulateflowingflowsontobloodmolecular-levelhybridinteractionstwoINTRODUCTION:developedunactivatedviscousactivateddepositedvesselwallusescoarsegrainedmolecularCGMDmicroscaledissipativeparticleDPDflowmacroscaleconditionsrelativelylowmediatedviareceptorsMETHODS:bindingmodeledconsistingMorsepotentialHookelawnonbondedbondedrespectivelyparametrizeddifferentinteractionscalescalculatedcorrelatingmeasuredRESULTS:Usingderivedrelationshipdistancecentersmassintegratingmolecular-scaleinter-plateletindicatesassumingrigid-plateletunderestimates89%93%comparedtakesaccountdeformabilityleadingpredictionsignificantlylowerattachmentCONCLUSIONS:predictivecapabilityshedslightdifferencesobservedtransientpermanentpatternssimulationframeworkcanadaptedinitialthrombusformationinvolvingmultiplewelldepositionadhesionvesselsMultiscaleModelRecruitmentAggregationPlateletsCorrelatingResultsmodeling

Similar Articles

Cited By