Allelic Variants for Candidate Nitrogen Fixation Genes Revealed by Sequencing in Red Clover ( L.).

Old��ich Trn��n��, David Vlk, Eli��ka Mackov��, Michaela Matou��kov��, Jana ��epkov��, Jan Ned��ln��k, Jan Hofbauer, Karel Vejra��ka, Hana Jake��ov��, Jan Jansa, Lubom��r Pi��lek, Daniela Knotov��
Author Information
  1. Old��ich Trn��n��: Agricultural Research, Ltd., Zahradn�� 1, 664 41 Troubsko, Czech Republic. trneny.oldrich@gmail.com.
  2. David Vlk: Department of Experimental Biology, Masaryk University, 625 00 Brno, Czech Republic. Vlk.DavidR@email.cz.
  3. Eli��ka Mackov��: Department of Experimental Biology, Masaryk University, 625 00 Brno, Czech Republic. mackova.e.94@gmail.com.
  4. Michaela Matou��kov��: Agricultural Research, Ltd., Zahradn�� 1, 664 41 Troubsko, Czech Republic. matouskova@vupt.cz.
  5. Jana ��epkov��: Department of Experimental Biology, Masaryk University, 625 00 Brno, Czech Republic. repkova@sci.muni.cz.
  6. Jan Ned��ln��k: Agricultural Research, Ltd., Zahradn�� 1, 664 41 Troubsko, Czech Republic. nedelnik@vupt.cz.
  7. Jan Hofbauer: Agricultural Research, Ltd., Zahradn�� 1, 664 41 Troubsko, Czech Republic. hofbauer@vupt.cz.
  8. Karel Vejra��ka: Agricultural Research, Ltd., Zahradn�� 1, 664 41 Troubsko, Czech Republic. vejrazka@vupt.cz.
  9. Hana Jake��ov��: Red Clover and Grass Breeding, 724 47 Hladk�� ��ivotice, Czech Republic. hana.jakesova@tiscali.cz.
  10. Jan Jansa: Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic. jansa@biomed.cas.cz. ORCID
  11. Lubom��r Pi��lek: Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 ��esk�� Bud��jovice, Czech Republic. lpialek@yahoo.com. ORCID
  12. Daniela Knotov��: Research Institute for Fodder Crops, Ltd., 664 41 Troubsko, Czech Republic. knotova@vupt.cz.

Abstract

Plant-rhizobia symbiosis can activate key genes involved in regulating nodulation associated with biological nitrogen fixation (BNF). Although the general molecular basis of the BNF process is frequently studied, little is known about its intraspecific variability and the characteristics of its allelic variants. This study's main goals were to describe phenotypic and genotypic variation in the context of nitrogen fixation in red clover ( L.) and identify variants in BNF candidate genes associated with BNF efficiency. Acetylene reduction assay validation was the criterion for selecting individual plants with particular BNF rates. Sequences in 86 key candidate genes were obtained by hybridization-based sequence capture target enrichment of plants with alternative phenotypes for nitrogen fixation. Two genes associated with BNF were identified: ethylene response factor required for nodule differentiation () and molybdate transporter 1 (). In addition, whole-genome population genotyping by double-digest restriction-site-associated sequencing (ddRADseq) was performed, and BNF was evaluated by the natural N abundance method. Polymorphisms associated with BNF and reflecting phenotype variability were identified. The genetic structure of plant accessions was not linked to BNF rate of measured plants. Knowledge of the genetic variation within BNF candidate genes and the characteristics of genetic variants will be beneficial in molecular diagnostics and breeding of red clover.

Keywords

References

  1. Nature. 2011 Nov 16;480(7378):520-4 [PMID: 22089132]
  2. Curr Opin Plant Biol. 2007 Oct;10(5):453-60 [PMID: 17900969]
  3. PLoS One. 2012;7(5):e37135 [PMID: 22675423]
  4. Plant Cell. 2014 Dec;26(12):4680-701 [PMID: 25527707]
  5. Glycobiology. 1994 Apr;4(2):127-34 [PMID: 8054712]
  6. Mol Phylogenet Evol. 2006 Jun;39(3):688-705 [PMID: 16483799]
  7. Front Plant Sci. 2017 Aug 23;8:1466 [PMID: 28878798]
  8. Science. 2000 Dec 15;290(5499):2105-10 [PMID: 11118137]
  9. Bioinformatics. 2007 May 1;23(9):1164-7 [PMID: 17344241]
  10. Nat Genet. 2006 Feb;38(2):203-8 [PMID: 16380716]
  11. Plant Physiol. 1997 Nov;115(3):1259-66 [PMID: 9390447]
  12. Plant Cell. 2008 Oct;20(10):2696-713 [PMID: 18978033]
  13. Plant Cell Physiol. 2010 Sep;51(9):1381-97 [PMID: 20660226]
  14. Sci Rep. 2015 Nov 30;5:17394 [PMID: 26617401]
  15. New Phytol. 2017 Dec;216(4):1223-1235 [PMID: 28805962]
  16. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4701-5 [PMID: 15070781]
  17. G3 (Bethesda). 2011 Aug;1(3):171-82 [PMID: 22384329]
  18. Annu Rev Microbiol. 1991;45:345-82 [PMID: 1741618]
  19. Front Plant Sci. 2016 Aug 09;7:1175 [PMID: 27555857]
  20. Microbiol Mol Biol Rev. 2004 Jun;68(2):280-300 [PMID: 15187185]
  21. Front Plant Sci. 2016 Jan 06;6:1133 [PMID: 26779207]
  22. Trends Plant Sci. 2003 Aug;8(8):387-93 [PMID: 12927972]
  23. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  24. PLoS One. 2013;8(3):e57438 [PMID: 23469194]
  25. Am J Bot. 2014 Feb;101(2):327-37 [PMID: 24500806]
  26. Genome Biol. 2016 Jun 06;17(1):122 [PMID: 27268795]
  27. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  28. Plant Cell. 2005 May;17(5):1625-36 [PMID: 15805486]
  29. DNA Res. 2017 Apr 1;24(2):193-203 [PMID: 28028038]
  30. Nature. 1988 Jan 14;331(6152):178-80 [PMID: 2448639]
  31. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  32. Front Plant Sci. 2013 Aug 22;4:300 [PMID: 23986765]
  33. J Hered. 2018 Mar 16;109(3):283-296 [PMID: 29385510]
  34. Plant Physiol. 2006 Feb;140(2):411-32 [PMID: 16407444]
  35. Plant Cell. 2015 Sep;27(9):2469-83 [PMID: 26307379]
  36. J Exp Bot. 2002 Apr;53(370):979-87 [PMID: 11912240]
  37. Front Plant Sci. 2016 Jan 29;7:34 [PMID: 26858743]
  38. Plant Physiol. 2003 Mar;131(3):1027-32 [PMID: 12644655]
  39. Planta. 2009 Apr;229(5):1047-56 [PMID: 19199104]
  40. New Phytol. 2020 Feb;225(3):1143-1151 [PMID: 31144317]
  41. Hereditas. 2013 Jun;150(2-3):17-25 [PMID: 23865962]
  42. Plant J. 2014 Mar;77(6):817-37 [PMID: 24483147]
  43. Nat Genet. 2011 May;43(5):491-8 [PMID: 21478889]
  44. Nature. 2006 Jun 29;441(7097):1149-52 [PMID: 16810256]
  45. BMC Genomics. 2016 Feb 27;17:141 [PMID: 26920390]
  46. Nature. 1997 May 22;387(6631):394-401 [PMID: 9163424]
  47. Front Plant Sci. 2019 Feb 01;10:75 [PMID: 30774643]
  48. Plant Cell. 2000 Sep;12(9):1647-66 [PMID: 11006338]
  49. Mol Plant Microbe Interact. 2016 Feb;29(2):143-52 [PMID: 26812045]
  50. New Phytol. 2011 Feb;189(3):765-776 [PMID: 21073469]
  51. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5682-7 [PMID: 8650152]
  52. PLoS One. 2013 May 31;8(5):e65688 [PMID: 23741505]
  53. Plant Physiol. 1986 Oct;82(2):588-90 [PMID: 16665072]
  54. Microbiology (Reading). 2006 Jan;152(Pt 1):199-207 [PMID: 16385130]
  55. Plant Physiol. 2014 Jan;164(1):400-11 [PMID: 24285852]
  56. Bioinformatics. 2012 Sep 15;28(18):2397-9 [PMID: 22796960]
  57. Curr Protoc Mol Biol. 2015 Oct 01;112:7.21.1-7.21.23 [PMID: 26423591]
  58. Plant Cell Environ. 2019 Jan;42(1):41-51 [PMID: 29808564]
  59. Plant Physiol. 2017 Feb;173(2):921-931 [PMID: 28057894]
  60. Plant J. 2015 Oct;84(1):1-19 [PMID: 26296678]
  61. PLoS Genet. 2016 Feb 01;12(2):e1005767 [PMID: 26828793]
  62. J Exp Bot. 2004 Dec;55(408):2473-82 [PMID: 15448180]
  63. Front Plant Sci. 2018 Oct 10;9:1434 [PMID: 30364181]
  64. Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33 [PMID: 25431634]
  65. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12230-4 [PMID: 9342391]
  66. Metallomics. 2013 Sep;5(9):1191-203 [PMID: 23800757]
  67. J Bacteriol. 1995 Nov;177(21):6237-45 [PMID: 7592390]
  68. Front Plant Sci. 2017 Apr 04;8:407 [PMID: 28421084]
  69. Science. 1997 Jan 24;275(5299):527-30 [PMID: 8999796]
  70. J Plant Physiol. 2010 Jun 15;167(9):683-92 [PMID: 20207444]
  71. Plant Cell. 1995 Jul;7(7):869-885 [PMID: 12242391]
  72. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  73. BMC Plant Biol. 2013 Oct 11;13:157 [PMID: 24119289]

Grants

  1. TH02010351/Technology Agency of the Czech Republic
  2. MZE-RO1718/Ministry of Agriculture of the Czech Republic
  3. Ref. 51834/2017-MZE17253/6.2.2/National programme of conservation and utilization of plant genetic resources and agro-biodiversity
  4. MUNI/A/0958/2018/Ministry of Education, Youth and Sports

MeSH Term

Alleles
Genes, Plant
Genotype
Host Microbial Interactions
Nitrogen Fixation
Phenotype
Plant Roots
Polymorphism, Genetic
Rhizobium
Sequence Analysis, DNA
Symbiosis
Trifolium

Word Cloud

Created with Highcharts 10.0.0BNFgenesassociatednitrogenfixationvariantsredclovercandidateplantsgenetickeybiologicalmolecularvariabilitycharacteristicsvariationLPlant-rhizobiasymbiosiscanactivateinvolvedregulatingnodulationAlthoughgeneralbasisprocessfrequentlystudiedlittleknownintraspecificallelicstudy'smaingoalsdescribephenotypicgenotypiccontextidentifyefficiencyAcetylenereductionassayvalidationcriterionselectingindividualparticularratesSequences86obtainedhybridization-basedsequencecapturetargetenrichmentalternativephenotypesTwoidentified:ethyleneresponsefactorrequirednoduledifferentiationmolybdatetransporter1additionwhole-genomepopulationgenotypingdouble-digestrestriction-site-associatedsequencingddRADseqperformedevaluatednaturalNabundancemethodPolymorphismsreflectingphenotypeidentifiedstructureplantaccessionslinkedratemeasuredKnowledgewithinwillbeneficialdiagnosticsbreedingAllelicVariantsCandidateNitrogenFixationGenesRevealedSequencingRedCloverpolymorphismsgenome-wideassociation

Similar Articles

Cited By