Anoxygenic Phototrophs Span Geochemical Gradients and Diverse Morphologies in Terrestrial Geothermal Springs.

Trinity L Hamilton, Annastacia C Bennett, Senthil K Murugapiran, Jeff R Havig
Author Information
  1. Trinity L Hamilton: Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA trinityh@umn.edu.
  2. Annastacia C Bennett: Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.
  3. Senthil K Murugapiran: Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.
  4. Jeff R Havig: Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA.

Abstract

Extant anoxygenic phototrophs are taxonomically, physiologically, and metabolically diverse and include examples from all seven bacterial phyla with characterized phototrophic members. pH, temperature, and sulfide are known to constrain phototrophs, but how these factors dictate the distribution and activity of specific taxa of anoxygenic phototrophs has not been reported. Here, we hypothesized that within the known limits of pH, temperature, and sulfide, the distribution, abundance, and activity of specific anoxygenic phototrophic taxa would vary due to key differences in the physiology of these organisms. To test this hypothesis, we examined the distribution, abundance, and potential activity of anoxygenic phototrophs in filaments, microbial mats, and sediments across geochemical gradients in geothermal features of Yellowstone National Park, which ranged in pH from 2.2 to 9.4 and in temperature from 31.5°C to 71.0°C. Indeed, our data indicate putative aerobic anoxygenic phototrophs within the are more abundant at lower pH and lower temperature, while phototrophic are prevalent in circumneutral to alkaline springs. In contrast to previous studies, our data suggest sulfide is not a key determinant of anoxygenic phototrophic taxa. Finally, our data underscore a role for photoheterotrophy (or photomixotrophy) across geochemical gradients in terrestrial geothermal ecosystems. There is a long and rich history of literature on phototrophs in terrestrial geothermal springs. These studies have revealed sulfide, pH, and temperature are the main constraints on phototrophy. However, the taxonomic and physiological diversity of anoxygenic phototrophs suggests that, within these constraints, specific geochemical parameters determine the distribution and activity of individual anoxygenic phototrophic taxa. Here, we report the recovery of sequences affiliated with characterized anoxygenic phototrophs in sites that range in pH from 2 to 9 and in temperature from 31°C to 71°C. Transcript abundance indicates anoxygenic phototrophs are active across this temperature and pH range. Our data suggest sulfide is not a key determinant of anoxygenic phototrophic taxa and underscore a role for photoheterotrophy in terrestrial geothermal ecosystems. These data provide the framework for high-resolution sequencing and activity approaches to characterize the physiology of specific anoxygenic phototrophic taxa across a broad range of temperatures and pH.

Keywords

References

  1. Nature. 2000 Sep 14;407(6801):177-9 [PMID: 11001053]
  2. Bioinformatics. 2017 Aug 15;33(16):2594-2595 [PMID: 28398468]
  3. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  4. J Biol Chem. 2009 Jun 5;284(23):15530-40 [PMID: 19336405]
  5. Nat Biotechnol. 2016 Sep;34(9):942-9 [PMID: 27454739]
  6. Science. 2007 Jul 27;317(5837):523-6 [PMID: 17656724]
  7. Environ Microbiol. 2007 Oct;9(10):2603-21 [PMID: 17803783]
  8. Curr Opin Microbiol. 2015 Jun;25:136-45 [PMID: 26113243]
  9. Genome Announc. 2014 Sep 11;2(5):null [PMID: 25212621]
  10. ISME J. 2013 Apr;7(4):817-29 [PMID: 23190731]
  11. Sci Rep. 2016 Apr 26;6:25078 [PMID: 27113678]
  12. ISME J. 2013 Apr;7(4):718-29 [PMID: 23235293]
  13. PLoS One. 2013 May 07;8(5):e62901 [PMID: 23667538]
  14. Annu Rev Microbiol. 2007;61:113-29 [PMID: 17506685]
  15. Front Microbiol. 2018 Oct 02;9:2353 [PMID: 30333812]
  16. Appl Environ Microbiol. 2005 Jul;71(7):3978-86 [PMID: 16000812]
  17. Microb Ecol. 2014 Nov;68(4):729-39 [PMID: 24889287]
  18. Curr Opin Chem Biol. 2016 Apr;31:166-78 [PMID: 27043270]
  19. Appl Environ Microbiol. 2009 Dec;75(23):7556-9 [PMID: 19801482]
  20. Front Microbiol. 2018 Sep 07;9:2075 [PMID: 30245673]
  21. Nat Commun. 2019 Feb 8;10(1):681 [PMID: 30737379]
  22. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  23. Microbiol Mol Biol Rev. 1998 Sep;62(3):695-724 [PMID: 9729607]
  24. Appl Environ Microbiol. 2006 Aug;72(8):5478-85 [PMID: 16885301]
  25. J Biol Chem. 2010 Mar 12;285(11):8268-77 [PMID: 20075073]
  26. Nature. 2010 May 6;465(7294):110-4 [PMID: 20400946]
  27. ISME J. 2018 Jan 29;:null [PMID: 29379176]
  28. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3749-53 [PMID: 7731978]
  29. F1000Res. 2016 Jun 27;5:1519 [PMID: 27853510]
  30. Geobiology. 2017 Mar;15(2):280-295 [PMID: 27917584]
  31. Appl Environ Microbiol. 2008 May;74(9):2822-33 [PMID: 18344337]
  32. Appl Environ Microbiol. 2009 Jul;75(13):4289-96 [PMID: 19429558]
  33. ISME J. 2018 Aug;12(8):1918-1928 [PMID: 29662145]
  34. Arch Microbiol. 2018 Aug;200(6):847-857 [PMID: 29423563]
  35. Science. 1973 Feb 2;179(4072):480-3 [PMID: 4196167]
  36. Front Microbiol. 2019 Jul 23;10:1658 [PMID: 31396180]
  37. PLoS One. 2013;8(1):e53350 [PMID: 23326417]
  38. Front Microbiol. 2015 Mar 05;6:177 [PMID: 25798135]
  39. Annu Rev Plant Biol. 2018 Apr 29;69:21-49 [PMID: 29505738]
  40. Geobiology. 2012 May;10(3):236-49 [PMID: 21955797]
  41. Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3805-10 [PMID: 18316740]
  42. Geobiology. 2011 Jul;9(4):321-9 [PMID: 21682840]
  43. ISME J. 2011 Aug;5(8):1262-78 [PMID: 21697961]
  44. Life (Basel). 2015 Jan 27;5(1):332-47 [PMID: 25633225]
  45. Sci Rep. 2018 Mar 7;8(1):4105 [PMID: 29515205]
  46. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  47. ISME J. 2013 Sep;7(9):1775-89 [PMID: 23575369]
  48. Int J Syst Bacteriol. 1995 Oct;45(4):676-81 [PMID: 7547286]
  49. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  50. ISME J. 2013 Jul;7(7):1402-12 [PMID: 23486249]
  51. BMC Bioinformatics. 2017 May 10;18(1):247 [PMID: 28486927]
  52. Appl Environ Microbiol. 2000 Jul;66(7):2835-41 [PMID: 10877776]
  53. J Bacteriol. 2010 Jun;192(12):3033-42 [PMID: 20363941]
  54. ISME J. 2010 Dec;4(12):1485-95 [PMID: 20535223]
  55. Environ Microbiol. 2012 May;14(5):1272-83 [PMID: 22404902]
  56. Science. 2010 Jun 11;328(5984):1388-91 [PMID: 20508088]
  57. ISME J. 2018 Jan;12(1):225-236 [PMID: 29028004]
  58. Int J Syst Evol Microbiol. 2000 Mar;50 Pt 2:583-91 [PMID: 10758864]
  59. FEMS Microbiol Rev. 2015 Nov;39(6):854-70 [PMID: 26139241]
  60. Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):187-93 [PMID: 11837302]
  61. Arch Microbiol. 1974;100(1):5-24 [PMID: 4374148]
  62. Appl Environ Microbiol. 2009 Jul;75(13):4565-72 [PMID: 19429553]
  63. Front Microbiol. 2015 Mar 27;6:226 [PMID: 25870589]
  64. Science. 1967 Nov;158(3804):1012-9 [PMID: 4861476]
  65. Nature. 2004 Jun 24;429(6994):863-7 [PMID: 15215862]
  66. Front Microbiol. 2012 Jun 18;3:221 [PMID: 22719737]
  67. Extremophiles. 2015 Nov;19(6):1067-76 [PMID: 26290358]
  68. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11436-40 [PMID: 17592124]
  69. Environ Microbiol. 2007 Jan;9(1):26-38 [PMID: 17227409]
  70. ISME J. 2012 Oct;6(10):1869-82 [PMID: 22456447]
  71. Front Microbiol. 2017 Jun 06;8:943 [PMID: 28634470]
  72. Microb Ecol. 2011 May;61(4):860-70 [PMID: 21365232]
  73. ISME J. 2008 Apr;2(4):364-78 [PMID: 18323780]
  74. J Biol Chem. 2010 Aug 27;285(35):27336-45 [PMID: 20558746]
  75. Front Microbiol. 2018 Feb 19;9:260 [PMID: 29515543]
  76. Microb Ecol. 2012 Jul;64(1):162-70 [PMID: 22327269]
  77. Appl Environ Microbiol. 1999 Dec;65(12):5474-83 [PMID: 10584006]
  78. Plant Physiol. 2006 Nov;142(3):911-22 [PMID: 17028153]
  79. Life (Basel). 2019 Jul 29;9(3):null [PMID: 31362401]
  80. Trends Microbiol. 2006 Nov;14(11):488-96 [PMID: 16997562]
  81. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
  82. Appl Environ Microbiol. 2014 Jan;80(2):653-61 [PMID: 24242238]

Word Cloud

Created with Highcharts 10.0.0anoxygenicphototrophspHtemperaturephototrophicsulfidetaxaactivitydatadistributionspecificacrossgeothermalwithinabundancekeygeochemical2springsterrestrialrangecharacterizedknownphysiologygradientsYellowstoneNationalPark9aerobiclowerstudiessuggestdeterminantunderscorerolephotoheterotrophyecosystemsconstraintsphototrophExtanttaxonomicallyphysiologicallymetabolicallydiverseincludeexamplessevenbacterialphylamembersconstrainfactorsdictatereportedhypothesizedlimitsvaryduedifferencesorganismstesthypothesisexaminedpotentialfilamentsmicrobialmatssedimentsfeaturesranged4315°C710°CIndeedindicateputativeabundantprevalentcircumneutralalkalinecontrastpreviousFinallyphotomixotrophylongrichhistoryliteraturerevealedmainphototrophyHowevertaxonomicphysiologicaldiversitysuggestsparametersdetermineindividualreportrecoverysequencesaffiliatedsites31°C71°CTranscriptindicatesactiveprovideframeworkhigh-resolutionsequencingapproachescharacterizebroadtemperaturesAnoxygenicPhototrophsSpanGeochemicalGradientsDiverseMorphologiesTerrestrialGeothermalSpringsChlorobiChloroflexiCyanobacteriaphotosynthesishotphotoassimilation

Similar Articles

Cited By