Nanoparticle transport phenomena in confined flows.

Ravi Radhakrishnan, Samaneh Farokhirad, David M Eckmann, Portonovo S Ayyaswamy
Author Information
  1. Ravi Radhakrishnan: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.
  2. Samaneh Farokhirad: Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States.
  3. David M Eckmann: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.
  4. Portonovo S Ayyaswamy: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States.

Abstract

Nanoparticles submerged in confined flow fields occur in several technological applications involving heat and mass transfer in nanoscale systems. Describing the transport with nanoparticles in confined flows poses additional challenges due to the coupling between the thermal effects and fluid forces. Here, we focus on the relevant literature related to Brownian motion, hydrodynamic interactions and transport associated with nanoparticles in confined flows. We review the literature on the several techniques that are based on the principles of non-equilibrium statistical mechanics and computational fluid dynamics in order to simultaneously preserve the fluctuation-dissipation relationship and the prevailing hydrodynamic correlations. Through a review of select examples, we discuss the treatments of the temporal dynamics from the colloidal scales to the molecular scales pertaining to nanoscale fluid dynamics and heat transfer. As evident from this review, there, indeed has been little progress made in regard to the accurate modeling of heat transport in nanofluids flowing in confined geometries such as tubes. Therefore the associated mechanisms with such processes remain unexplained. This review has revealed that the information available in open literature on the transport properties of nanofluids is often contradictory and confusing. It has been very difficult to draw definitive conclusions. The quality of work reported on this topic is non-uniform. A significant portion of this review pertains to the treatment of the fluid dynamic aspects of the nanoparticle transport problem. By simultaneously treating the energy transport in ways discussed in this review as related to momentum transport, the ultimate goal of understanding nanoscale heat transport in confined flows may be achieved.

References

  1. Int J Hyperthermia. 2005 Feb;21(1):57-75 [PMID: 15764351]
  2. J Fluid Mech. 2017 Jun 25;821:117-152 [PMID: 29109590]
  3. Sci Rep. 2014 May 02;4:4871 [PMID: 24786000]
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011901 [PMID: 16089995]
  5. Nat Nanotechnol. 2007 Dec;2(12):751-60 [PMID: 18654426]
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 1):062501 [PMID: 18233882]
  7. Eur Phys J E Soft Matter. 2007 Aug;23(4):349-54 [PMID: 17712520]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 1):061203 [PMID: 18233838]
  9. Soft Matter. 2011 Dec 22;8:1934-1946 [PMID: 22375153]
  10. Nanoscale. 2018 Aug 16;10(32):15350-15364 [PMID: 30080212]
  11. Nanoscale Res Lett. 2011 Mar 22;6(1):247 [PMID: 21711761]
  12. Nat Rev Cancer. 2011 Dec 23;12(1):39-50 [PMID: 22193407]
  13. Ultrasound Med Biol. 2007 Jun;33(6):981-6 [PMID: 17434665]
  14. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  15. Langmuir. 2017 Oct 24;33(42):11332-11344 [PMID: 28810736]
  16. Phys Rev Lett. 1993 Mar 1;70(9):1339-1342 [PMID: 10054351]
  17. Small. 2015 Mar;11(9-10):1055-71 [PMID: 25387905]
  18. Biomed Eng Online. 2017 Mar 23;16(1):36 [PMID: 28335790]
  19. PLoS One. 2015 Apr 22;10(4):e0122097 [PMID: 25901833]
  20. J Chem Phys. 2011 Sep 21;135(11):114104 [PMID: 21950847]
  21. Annu Rev Biophys Biomol Struct. 2001;30:211-43 [PMID: 11340059]
  22. Phys Med Biol. 2004 Dec 21;49(24):5529-46 [PMID: 15724540]
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct;64(4 Pt 2):046115 [PMID: 11690098]
  24. Nanomedicine (Lond). 2009 Oct;4(7):813-45 [PMID: 19839816]
  25. Soft Matter. 2015 Aug 7;11(29):5955-69 [PMID: 26126781]
  26. Phys Rev E. 2017 Jul;96(1-1):013306 [PMID: 29347090]
  27. Phys Rev Lett. 2005 May 20;94(19):198302 [PMID: 16090221]
  28. Nanotechnology. 2008 Jul 30;19(30):305706 [PMID: 21828773]
  29. Cold Spring Harb Symp Quant Biol. 1987;52:381-90 [PMID: 3454267]
  30. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  31. ACS Nano. 2013 Mar 26;7(3):2461-9 [PMID: 23383962]
  32. Nat Rev Cancer. 2017 Jan;17(1):20-37 [PMID: 27834398]
  33. Nanoscale. 2019 Apr 4;11(14):6916-6928 [PMID: 30912772]
  34. Eur Phys J E Soft Matter. 2002 Sep;9(1):63-6 [PMID: 15010931]
  35. J Phys Chem B. 2006 Mar 9;110(9):4323-8 [PMID: 16509730]
  36. J Phys Chem B. 2005 Nov 17;109(45):21406-12 [PMID: 16853777]
  37. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  38. Nanotechnology. 2010 May 28;21(21):215703 [PMID: 20431197]
  39. Phys Med Biol. 2005 Jun 21;50(12):2937-53 [PMID: 15930612]
  40. J Phys Chem B. 1998 Apr 30;102(18):3586-616 [PMID: 24889800]
  41. Phys Rev Lett. 2007 Jan 12;98(2):028302 [PMID: 17358654]
  42. Ann Biomed Eng. 2013 Jan;41(1):78-88 [PMID: 22855120]
  43. Nano Lett. 2009 Dec;9(12):4128-32 [PMID: 19995084]
  44. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052303 [PMID: 26066173]
  45. Nanoscale Res Lett. 2011 Mar 22;6(1):248 [PMID: 21711762]
  46. Nano Lett. 2006 Mar;6(3):419-23 [PMID: 16522034]
  47. Phys Rev Lett. 2006 May 12;96(18):188302 [PMID: 16712404]
  48. J Biomol Struct Dyn. 1999 Feb;16(4):845-62 [PMID: 10217454]
  49. Nat Rev Drug Discov. 2014 Sep;13(9):655-72 [PMID: 25103255]
  50. R Soc Open Sci. 2016 Jun 29;3(6):160260 [PMID: 27429783]
  51. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14159-64 [PMID: 16186506]
  52. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 2):016708 [PMID: 17677595]
  53. J Chem Phys. 2009 Apr 7;130(13):134111 [PMID: 19355721]
  54. Int J Hyperthermia. 2012;28(8):776-87 [PMID: 23153219]
  55. J Biomech Eng. 2006 Jun;128(3):360-70 [PMID: 16706585]
  56. Biomaterials. 2017 Apr;124:169-179 [PMID: 28209527]
  57. Ann Surg. 1957 Oct;146(4):596-606 [PMID: 13470751]
  58. J Nanosci Nanotechnol. 2008 Jul;8(7):3710-8 [PMID: 19051928]
  59. Phys Med Biol. 2005 Sep 21;50(18):4245-58 [PMID: 16148391]
  60. J Heat Transfer. 2019 May;141(5):0524011-524016 [PMID: 31186582]
  61. Nanomedicine (Lond). 2013 Aug;8(8):1323-33 [PMID: 23914967]
  62. J Colloid Interface Sci. 2006 Jun 15;298(2):967-72 [PMID: 16457835]
  63. Proc Natl Acad Sci U S A. 2015 May 5;112(18):5579-84 [PMID: 25901321]
  64. J Chem Phys. 2009 Dec 21;131(23):234115 [PMID: 20025322]
  65. Nanomedicine. 2017 May;13(4):1495-1506 [PMID: 28065731]
  66. Biophys J. 2011 Jul 20;101(2):319-26 [PMID: 21767483]
  67. J Phys Condens Matter. 2017 Apr 20;29(15):155302 [PMID: 28170348]
  68. Phys Rev Lett. 2004 Oct 29;93(18):180603 [PMID: 15525146]
  69. ACS Nano. 2015 Jul 28;9(7):6644-54 [PMID: 26115196]
  70. Phys Rev Lett. 2004 Oct 1;93(14):144301 [PMID: 15524799]
  71. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031401 [PMID: 19391938]
  72. J Magn Magn Mater. 2010 Mar 1;322(6):727-733 [PMID: 20161608]
  73. ACS Nano. 2012 Dec 21;6(12):10598-605 [PMID: 23148579]
  74. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031402 [PMID: 19391939]
  75. Nano Lett. 2006 Jul;6(7):1529-34 [PMID: 16834444]
  76. J Chem Phys. 2012 Jul 28;137(4):044117 [PMID: 22852607]
  77. Phys Rev Fluids. 2016;1: [PMID: 27830213]
  78. Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16530-5 [PMID: 20823256]
  79. Nanoscale Res Lett. 2011 Mar 15;6(1):221 [PMID: 21711737]
  80. Int J Hyperthermia. 2012;28(2):113-21 [PMID: 22335225]
  81. Philos Trans A Math Phys Eng Sci. 2011 Jun 13;369(1944):2237-45 [PMID: 21536570]
  82. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10963-8 [PMID: 21690358]
  83. Phys Rev E. 2018 Oct;98(4):null [PMID: 30687804]
  84. Phys Rev Lett. 2005 Jan 21;94(2):025901 [PMID: 15698196]
  85. IEEE Trans Biomed Eng. 1994 Feb;41(2):97-107 [PMID: 8026856]
  86. J Chem Phys. 2009 Dec 28;131(24):244117 [PMID: 20059064]
  87. Proc Natl Acad Sci U S A. 2005 May 10;102(19):6679-85 [PMID: 15870208]
  88. J Appl Physiol. 1948 Aug;1(2):93-122 [PMID: 18887578]
  89. J Chem Phys. 2009 Oct 28;131(16):164106 [PMID: 19894926]
  90. Mol Phys. 2012;110(11-12):1057-1067 [PMID: 22865935]
  91. Biophys J. 2018 Apr 24;114(8):1830-1846 [PMID: 29694862]
  92. Int J Hyperthermia. 2006 Dec;22(8):673-85 [PMID: 17390997]
  93. Adv Drug Deliv Rev. 2008 Jun 10;60(9):971-8 [PMID: 18423930]
  94. J Nanotechnol Eng Med. 2013 Feb;4(1):101011-1010115 [PMID: 23917383]
  95. Philos Trans A Math Phys Eng Sci. 2002 Mar 15;360(1792):437-51 [PMID: 16214687]
  96. Phys Fluids (1994). 2011 Jul;23(7):73602-7360215 [PMID: 21918592]
  97. J Chem Phys. 2005 Oct 8;123(14):144905 [PMID: 16238422]

Grants

  1. U01 CA227550/NCI NIH HHS
  2. U01 EB016027/NIBIB NIH HHS
  3. U54 CA193417/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0transportconfinedreviewheatflowsfluidnanoscaleliteraturedynamicsseveraltransfernanoparticlesrelatedhydrodynamicassociatedsimultaneouslyscalesnanofluidsNanoparticlessubmergedflowfieldsoccurtechnologicalapplicationsinvolvingmasssystemsDescribingposesadditionalchallengesduecouplingthermaleffectsforcesfocusrelevantBrownianmotioninteractionstechniquesbasedprinciplesnon-equilibriumstatisticalmechanicscomputationalorderpreservefluctuation-dissipationrelationshipprevailingcorrelationsselectexamplesdiscusstreatmentstemporalcolloidalmolecularpertainingevidentindeedlittleprogressmaderegardaccuratemodelingflowinggeometriestubesThereforemechanismsprocessesremainunexplainedrevealedinformationavailableopenpropertiesoftencontradictoryconfusingdifficultdrawdefinitiveconclusionsqualityworkreportedtopicnon-uniformsignificantportionpertainstreatmentdynamicaspectsnanoparticleproblemtreatingenergywaysdiscussedmomentumultimategoalunderstandingmayachievedNanoparticlephenomena

Similar Articles

Cited By