RNA-seq analysis provides insights into cold stress responses of Xanthomonas citri pv. citri.

Jin-Xing Liao, Kai-Huai Li, Jin-Pei Wang, Jia-Ru Deng, Qiong-Guang Liu, Chang-Qing Chang
Author Information
  1. Jin-Xing Liao: Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.
  2. Kai-Huai Li: Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.
  3. Jin-Pei Wang: Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.
  4. Jia-Ru Deng: Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.
  5. Qiong-Guang Liu: Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.
  6. Chang-Qing Chang: Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China. changcq@scau.edu.cn.

Abstract

BACKGROUND: Xanthomonas citri pv. citri (Xcc) is a citrus canker causing Gram-negative bacteria. Currently, little is known about the biological and molecular responses of Xcc to low temperatures.
RESULTS: Results depicted that low temperature significantly reduced growth and increased biofilm formation and unsaturated fatty acid (UFA) ratio in Xcc. At low temperature Xcc formed branching structured motility. Global transcriptome analysis revealed that low temperature modulates multiple signaling networks and essential cellular processes such as carbon, nitrogen and fatty acid metabolism in Xcc. Differential expression of genes associated with type IV pilus system and pathogenesis are important cellular adaptive responses of Xcc to cold stress.
CONCLUSIONS: Study provides clear insights into biological characteristics and genome-wide transcriptional analysis based molecular mechanism of Xcc in response to low temperature.

Keywords

References

  1. Trends Plant Sci. 2007 Oct;12(10):444-51 [PMID: 17855156]
  2. J Bacteriol. 2000 Jan;182(2):365-70 [PMID: 10629181]
  3. MBio. 2018 Jul 24;9(4): [PMID: 30042200]
  4. Mol Microbiol. 1998 Oct;30(2):295-304 [PMID: 9791175]
  5. Microbes Infect. 2000 Feb;2(2):157-66 [PMID: 10742688]
  6. Arch Microbiol. 2001 Dec;176(6):393-9 [PMID: 11734881]
  7. Mol Microbiol. 1999 Apr;32(1):1-10 [PMID: 10216854]
  8. J Bacteriol. 2005 Jun;187(11):3795-9 [PMID: 15901703]
  9. Plant Physiol. 2004 Jun;135(2):1040-9 [PMID: 15173571]
  10. J Biol Chem. 2009 Oct 23;284(43):29526-35 [PMID: 19679654]
  11. Environ Microbiol. 2015 Nov;17(11):4290-305 [PMID: 25684220]
  12. Curr Biol. 2018 May 21;28(10):R619-R634 [PMID: 29787730]
  13. Nat Rev Microbiol. 2008 Mar;6(3):222-33 [PMID: 18264115]
  14. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  15. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61 [PMID: 14681407]
  16. Curr Opin Plant Biol. 2007 Jun;10(3):290-5 [PMID: 17468037]
  17. Crit Rev Microbiol. 1994;20(4):285-328 [PMID: 7857519]
  18. Annu Rev Plant Biol. 2006;57:781-803 [PMID: 16669782]
  19. mSphere. 2018 Apr 18;3(2): [PMID: 29669887]
  20. EcoSal Plus. 2008 Sep;3(1):null [PMID: 26443744]
  21. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  22. Elife. 2017 Aug 03;6: [PMID: 28826491]
  23. PLoS Comput Biol. 2015 Oct 02;11(10):e1004452 [PMID: 26431398]
  24. J Mol Biol. 1968 Jan 28;31(2):209-26 [PMID: 4865483]
  25. FEMS Microbiol Lett. 2009 Dec;301(2):188-92 [PMID: 19863661]
  26. J Biol Chem. 2004 Aug 13;279(33):34489-95 [PMID: 15194690]
  27. Biochem Biophys Res Commun. 1997 Oct 9;239(1):85-90 [PMID: 9345274]
  28. Methods Mol Biol. 2010;639:39-55 [PMID: 20387039]
  29. Sci Rep. 2016 Sep 06;6:32811 [PMID: 27595587]
  30. Nat Rev Microbiol. 2011 May;9(5):344-55 [PMID: 21478901]
  31. Chem Cent J. 2015 Dec 24;9:68 [PMID: 26705419]
  32. Mol Biosyst. 2009 Dec;5(12):1904-12 [PMID: 19763333]
  33. Biochem Mol Biol Educ. 2011 Sep-Oct;39(5):362-6 [PMID: 21948508]
  34. J Plant Physiol. 2010 May 1;167(7):555-60 [PMID: 19959255]
  35. Ying Yong Sheng Tai Xue Bao. 2010 Aug;21(8):1915-25 [PMID: 21043095]
  36. Mol Microbiol. 2016 Jul;101(2):186-93 [PMID: 27028358]
  37. Microbiology. 2011 Mar;157(Pt 3):819-29 [PMID: 21109564]
  38. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):76-80 [PMID: 8552679]
  39. Annu Rev Nutr. 2004;24:345-76 [PMID: 15189125]
  40. Cell Mol Biol (Noisy-le-grand). 2004 Jul;50(5):631-42 [PMID: 15559979]
  41. BMC Microbiol. 2013 Apr 12;13:81 [PMID: 23587016]
  42. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12462-7 [PMID: 9770508]
  43. Cell Mol Life Sci. 2002 Nov;59(11):1902-13 [PMID: 12530521]
  44. Nature. 2002 May 23;417(6887):459-63 [PMID: 12024217]
  45. J Bacteriol. 2002 Nov;184(22):6395-402 [PMID: 12399512]
  46. Mol Plant Microbe Interact. 2014 Oct;27(10):1132-47 [PMID: 25180689]
  47. Plant Physiol. 1990 Apr;92(4):1062-9 [PMID: 16667371]
  48. Mol Genet Genomics. 2007 Jun;277(6):713-23 [PMID: 17318583]
  49. Nature. 2014 Jun 5;510(7503):48-57 [PMID: 24899304]
  50. Front Microbiol. 2017 Dec 12;8:2486 [PMID: 29312195]
  51. Extremophiles. 2004 Oct;8(5):401-10 [PMID: 15241658]
  52. Appl Environ Microbiol. 1997 Oct;63(10):3887-94 [PMID: 9327552]
  53. J Exp Bot. 2012 Jun;63(10):3523-43 [PMID: 22467407]
  54. Annu Rev Phytopathol. 2005;43:83-116 [PMID: 16078878]
  55. J Bacteriol. 2000 Dec;182(24):7083-7 [PMID: 11092874]
  56. Mol Microbiol. 2004 Jul;53(1):309-21 [PMID: 15225324]
  57. Annu Rev Microbiol. 2014;68:101-16 [PMID: 24819366]
  58. Nat Commun. 2017 Nov 27;8(1):1808 [PMID: 29180698]

Grants

  1. 2015CB150600/The National Basic Research Program of China

MeSH Term

Cold-Shock Response
Flagella
Gene Expression Profiling
Membrane Lipids
RNA-Seq
Xanthomonas

Chemicals

Membrane Lipids

Word Cloud

Created with Highcharts 10.0.0XcclowtemperaturecitriXanthomonasresponsesanalysisstresspvbiologicalmolecularformationfattyacidcellularcoldprovidesinsightsBACKGROUND:citruscankercausingGram-negativebacteriaCurrentlylittleknowntemperaturesRESULTS:ResultsdepictedsignificantlyreducedgrowthincreasedbiofilmunsaturatedUFAratioformedbranchingstructuredmotilityGlobaltranscriptomerevealedmodulatesmultiplesignalingnetworksessentialprocessescarbonnitrogenmetabolismDifferentialexpressiongenesassociatedtypeIVpilussystempathogenesisimportantadaptiveCONCLUSIONS:Studyclearcharacteristicsgenome-widetranscriptionalbasedmechanismresponseRNA-seqBiofilmFattyacidsLowMetabolismMotility

Similar Articles

Cited By