Quantifying the contribution of microbial immigration in engineered water systems.

Ran Mei, Wen-Tso Liu
Author Information
  1. Ran Mei: Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  2. Wen-Tso Liu: Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. wtliu@illinois.edu. ORCID

Abstract

Immigration is a process that can influence the assembly of microbial communities in natural and engineered environments. However, it remains challenging to quantitatively evaluate the contribution of this process to the microbial diversity and function in the receiving ecosystems. Currently used methods, i.e., counting shared microbial species, microbial source tracking, and neutral community model, rely on abundance profile to reveal the extent of overlapping between the upstream and downstream communities. Thus, they cannot suggest the quantitative contribution of immigrants to the downstream community function because activities of individual immigrants are not considered after entering the receiving environment. This limitation can be overcome by using an approach that couples a mass balance model with high-throughput DNA sequencing, i.e., ecogenomics-based mass balance. It calculates the net growth rate of individual microbial immigrants and partitions the entire community into active populations that contribute to the community function and inactive ones that carry minimal function. Linking activities of immigrants to their abundance further provides quantification of the contribution from an upstream environment to the downstream community. Considering only active populations can improve the accuracy of identifying key environmental parameters dictating process performance using methods such as machine learning.

Keywords

References

  1. Sci Rep. 2019 Sep 4;9(1):12783 [PMID: 31484981]
  2. Appl Environ Microbiol. 2013 May;79(9):2906-13 [PMID: 23435885]
  3. Appl Microbiol Biotechnol. 2014 May;98(10):4723-36 [PMID: 24553968]
  4. Sci Total Environ. 2018 Feb 1;613-614:1104-1116 [PMID: 28954372]
  5. Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):E9842-E9848 [PMID: 30266791]
  6. Environ Microbiol. 2012 Feb;14(2):441-52 [PMID: 22040222]
  7. PLoS One. 2015 Mar 06;10(3):e0119131 [PMID: 25748027]
  8. Nat Commun. 2019 Mar 21;10(1):1314 [PMID: 30899017]
  9. Sci Total Environ. 2015 Feb 1;505:435-45 [PMID: 25461045]
  10. Microb Ecol. 2011 Apr;61(3):486-95 [PMID: 20972561]
  11. Nucleic Acids Res. 2008 Sep;36(16):e105 [PMID: 18660515]
  12. Appl Microbiol Biotechnol. 2012 Feb;93(3):993-1003 [PMID: 22189863]
  13. Water Res. 2015 Apr 15;73:132-44 [PMID: 25655320]
  14. Curr Opin Biotechnol. 2014 Jun;27:55-64 [PMID: 24863897]
  15. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4130-4 [PMID: 16592364]
  16. ISME J. 2016 Jan;10(1):11-20 [PMID: 26262816]
  17. ISME J. 2014 Mar;8(3):541-51 [PMID: 24132079]
  18. Sci Rep. 2017 Aug 24;7(1):9343 [PMID: 28839166]
  19. Environ Microbiol. 2009 Jun;11(6):1612-23 [PMID: 19453609]
  20. Environ Microbiol. 2017 Aug;19(8):3163-3174 [PMID: 28654183]
  21. Environ Sci Technol. 2018 Mar 6;52(5):2618-2628 [PMID: 29299927]
  22. Environ Sci Technol. 2012 Aug 21;46(16):8851-9 [PMID: 22793041]
  23. ISME J. 2016 Mar;10(3):582-95 [PMID: 26251872]
  24. PLoS One. 2011;6(11):e28132 [PMID: 22132229]
  25. Appl Environ Microbiol. 2015 Oct;81(20):7067-77 [PMID: 26231650]
  26. Water Res. 2018 Dec 15;147:403-412 [PMID: 30336343]
  27. NPJ Biofilms Microbiomes. 2018 Jul 18;4:15 [PMID: 30038792]
  28. Appl Environ Microbiol. 2008 Jun;74(11):3610-4 [PMID: 18408059]
  29. ISME J. 2015 Jul;9(7):1488-95 [PMID: 25526370]
  30. Environ Microbiol. 2010 Feb;12(2):378-92 [PMID: 19840106]
  31. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8916-20 [PMID: 12843401]
  32. ISME J. 2018 Jun;12(6):1520-1531 [PMID: 29588495]
  33. Nat Methods. 2011 Jul 17;8(9):761-3 [PMID: 21765408]
  34. Environ Sci Technol. 2017 Apr 4;51(7):3982-3992 [PMID: 28240534]
  35. Am Nat. 2000 May;155(5):606-617 [PMID: 10777433]
  36. J Vis Exp. 2009 Feb 18;(24):null [PMID: 19229184]
  37. Environ Microbiol. 2013 Feb;15(2):588-96 [PMID: 23171378]
  38. ISME J. 2013 Nov;7(11):2061-8 [PMID: 23823491]
  39. Appl Environ Microbiol. 1999 Mar;65(3):1280-8 [PMID: 10049894]
  40. ISME J. 2013 May;7(5):937-48 [PMID: 23254515]
  41. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4631-6 [PMID: 15070769]
  42. Curr Opin Biotechnol. 2019 Jun;57:151-159 [PMID: 31030172]
  43. J Open Res Softw. 2018;3(30):null [PMID: 31552137]
  44. Sci Rep. 2016 Sep 26;6:34090 [PMID: 27666090]
  45. Water Res. 2017 Nov 1;124:77-84 [PMID: 28750287]
  46. Q Rev Biol. 2010 Jun;85(2):183-206 [PMID: 20565040]
  47. Microbiome. 2019 Apr 17;7(1):65 [PMID: 30995941]
  48. Water Res. 2014 Oct 1;62:40-52 [PMID: 24937356]
  49. Environ Microbiol. 2006 Apr;8(4):732-40 [PMID: 16584484]
  50. Environ Int. 2019 Dec;133(Pt A):105165 [PMID: 31520957]
  51. ISME J. 2011 Dec;5(12):1844-56 [PMID: 21562600]
  52. Lett Appl Microbiol. 2016 Nov;63(5):356-362 [PMID: 27490172]
  53. Microbiome. 2013 Jun 05;1(1):17 [PMID: 24450808]
  54. Microbiome. 2018 Jan 19;6(1):16 [PMID: 29351813]
  55. ISME J. 2013 Nov;7(11):2069-79 [PMID: 23739053]
  56. Environ Microbiol. 2008 Mar;10(3):580-8 [PMID: 18028417]
  57. Environ Microbiol. 2019 Jan;21(1):182-196 [PMID: 30325092]

MeSH Term

Microbiota
Sanitary Engineering
Water Microbiology

Word Cloud

Created with Highcharts 10.0.0microbialcommunitycontributionfunctionimmigrantsprocesscandownstreambalancecommunitiesengineeredreceivingmethodsiemodelabundanceupstreamactivitiesindividualenvironmentusingmassactivepopulationsimmigrationwatersystemsImmigrationinfluenceassemblynaturalenvironmentsHoweverremainschallengingquantitativelyevaluatediversityecosystemsCurrentlyusedcountingsharedspeciessourcetrackingneutralrelyprofilerevealextentoverlappingThussuggestquantitativeconsideredenteringlimitationovercomeapproachcoupleshigh-throughputDNAsequencingecogenomics-basedcalculatesnetgrowthratepartitionsentirecontributeinactiveonescarryminimalLinkingprovidesquantificationConsideringimproveaccuracyidentifyingkeyenvironmentalparametersdictatingperformancemachinelearningQuantifyingEngineeredMassMicrobialMicrobiome

Similar Articles

Cited By