Characterization of nAChRs in supports neuronal and non-neuronal roles in the cnidarian-bilaterian common ancestor.

Dylan Z Faltine-Gonzalez, Michael J Layden
Author Information
  1. Dylan Z Faltine-Gonzalez: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015 USA.
  2. Michael J Layden: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015 USA. ORCID

Abstract

BACKGROUND: Nicotinic and muscarinic acetylcholine receptors likely evolved in the cnidarian-bilaterian common ancestor. Both receptor families are best known for their role at chemical synapses in bilaterian animals, but they also have described roles as non-neuronal signaling receptors within the bilaterians. It is not clear when either of the functions for nicotinic or muscarinic receptors evolved. Previous studies in cnidarians suggest that acetylcholine's neuronal role existed prior to the cnidarian-bilaterian divergence, but did not address potential non-neuronal functions. To determine the origins of neuronal and non-neuronal functions of nicotinic acetylcholine receptors, we investigated the phylogenetic position of cnidarian acetylcholine receptors, characterized the spatiotemporal expression patterns of nicotinic receptors in , and compared pharmacological studies in to the previous work in other cnidarians.
RESULTS: Consistent with described activity in other cnidarians, treatment with acetylcholine-induced tentacular contractions in the cnidarian sea anemone Phylogenetic analysis suggests that the genome encodes 26 nicotinic (nAChRs) and no muscarinic (mAChRs) acetylcholine receptors and that nAChRs independently radiated in cnidarian and bilaterian linages. The namesake nAChR agonist, nicotine, induced tentacular contractions similar to those observed with acetylcholine, and the nAChR antagonist mecamylamine suppressed tentacular contractions induced by both acetylcholine and nicotine. This indicated that tentacle contractions are in fact mediated by nAChRs. nicotine also induced the contraction of radial muscles, which contract as part of the peristaltic waves that propagate along the oral-aboral axis of the trunk. Radial contractions and peristaltic waves were suppressed by mecamylamine. The ability of nicotine to mimic acetylcholine responses, and of mecamylamine to suppress acetylcholine and nicotine-induced contractions, supports a neuronal function for acetylcholine in cnidarians. Examination of the spatiotemporal expression of nAChRs () during development and in juvenile polyps identified that are expressed in neurons, muscles, gonads, and large domains known to be consistent with a role in developmental patterning. These patterns are consistent with nAChRs functioning in both a neuronal and non-neuronal capacity in
CONCLUSION: Our data suggest that nAChR receptors functioned at chemical synapses in to regulate tentacle contraction. Similar responses to acetylcholine are well documented in cnidarians, suggesting that the neuronal function represents an ancestral role for nAChRs. Expression patterns of nAChRs are consistent with both neuronal and non-neuronal roles for acetylcholine in cnidarians. Together, these observations suggest that both neuronal and non-neuronal functions for the ancestral nAChRs were present in the cnidarian-bilaterian common ancestor. Thus, both roles described in bilaterian species likely arose at or near the base of nAChR evolution.

Keywords

References

  1. Cell Rep. 2012 Aug 30;2(2):242-8 [PMID: 22854023]
  2. J Exp Biol. 2008 Sep;211(Pt 17):2876-88 [PMID: 18723547]
  3. Science. 2007 Jul 6;317(5834):86-94 [PMID: 17615350]
  4. Dev Genes Evol. 2002 Mar;212(2):99-103 [PMID: 11914942]
  5. Nature. 2008 Apr 10;452(7188):745-9 [PMID: 18322464]
  6. Nat Protoc. 2013 May;8(5):900-15 [PMID: 23579779]
  7. Science. 2013 Dec 13;342(6164):1242592 [PMID: 24337300]
  8. Front Zool. 2014 Jun 18;11:44 [PMID: 25009575]
  9. Comp Biochem Physiol A Mol Integr Physiol. 2007 Jan;146(1):9-25 [PMID: 17101286]
  10. Nature. 2008 Aug 21;454(7207):955-60 [PMID: 18719581]
  11. Nature. 2011 Jul 24;476(7360):320-3 [PMID: 21785439]
  12. Nat Ecol Evol. 2017 Oct;1(10):1535-1542 [PMID: 29185520]
  13. Nat Rev Neurosci. 2002 Feb;3(2):102-14 [PMID: 11836518]
  14. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  15. Annu Rev Pharmacol Toxicol. 2007;47:699-729 [PMID: 17009926]
  16. Life Sci. 2003 Feb 28;72(15):1745-56 [PMID: 12559395]
  17. Comp Biochem Physiol C. 1984;79(2):375-82 [PMID: 6151470]
  18. Eukaryot Cell. 2015 Aug;14(8):834-44 [PMID: 26092919]
  19. Int J Mol Sci. 2014 Mar 17;15(3):4565-82 [PMID: 24642879]
  20. Dev Biol. 2017 Nov 15;431(2):336-346 [PMID: 28888696]
  21. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  22. Science. 2019 Jul 26;365(6451): [PMID: 31346039]
  23. BMC Genomics. 2018 Jan 4;19(1):17 [PMID: 29301490]
  24. Comp Biochem Physiol Part D Genomics Proteomics. 2009 Dec;4(4):268-89 [PMID: 20403752]
  25. Front Zool. 2006 Apr 27;3:7 [PMID: 16643651]
  26. Nat Ecol Evol. 2019 May;3(5):801-810 [PMID: 30858591]
  27. J Gen Physiol. 2003 Feb;121(2):163-75 [PMID: 12566542]
  28. Nature. 2010 Mar 25;464(7288):592-6 [PMID: 20228792]
  29. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  30. Comp Biochem Physiol C. 1986;83(1):171-8 [PMID: 2869894]
  31. J Gen Physiol. 2013 Jan;141(1):95-104 [PMID: 23277476]
  32. Nature. 2012 Feb 22;482(7386):552-6 [PMID: 22358844]
  33. J Mol Biol. 2005 Mar 4;346(4):967-89 [PMID: 15701510]
  34. Cell Mol Life Sci. 2013 Sep;70(17):3231-42 [PMID: 23604020]
  35. Genomics. 2005 Feb;85(2):176-87 [PMID: 15676276]
  36. BMC Evol Biol. 2019 Jan 30;19(1):38 [PMID: 30700248]
  37. Dev Biol. 2015 Feb 1;398(1):120-33 [PMID: 25478911]
  38. Pharmacol Ther. 1998 Jan;77(1):59-79 [PMID: 9500159]
  39. Development. 2018 May 17;145(10): [PMID: 29739837]
  40. Br J Pharmacol. 2001 May;133(1):207-16 [PMID: 11325812]
  41. Genomics. 2003 Oct;82(4):441-51 [PMID: 13679024]
  42. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  43. Nature. 2010 Aug 5;466(7307):720-6 [PMID: 20686567]
  44. Auton Autacoid Pharmacol. 2006 Jul;26(3):219-33 [PMID: 16879488]
  45. Nature. 2014 Jun 5;510(7503):109-14 [PMID: 24847885]
  46. J Exp Biol. 2015 Feb 15;218(Pt 4):598-611 [PMID: 25696823]
  47. Cell. 2018 May 31;173(6):1520-1534.e20 [PMID: 29856957]
  48. Anesthesiology. 1993 May;78(5):954-65 [PMID: 8489068]
  49. Zoology (Jena). 2014 Aug;117(4):225-6 [PMID: 24986234]
  50. Jpn J Pharmacol. 2001 Jan;85(1):2-10 [PMID: 11243568]
  51. Life Sci. 2007 May 30;80(24-25):2206-9 [PMID: 17363003]
  52. Plant Signal Behav. 2016 Jun 2;11(6):e1187355 [PMID: 27348536]
  53. Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150041 [PMID: 26598724]
  54. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  55. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  56. J Recept Signal Transduct Res. 2017 Jun;37(3):267-275 [PMID: 27601178]
  57. Nature. 2009 Mar 26;458(7237):534-7 [PMID: 19252481]
  58. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  59. Br J Pharmacol. 2008 Aug;154(8):1558-71 [PMID: 18500366]
  60. eNeuro. 2018 Nov 8;5(5): [PMID: 30564629]
  61. PLoS One. 2014 Apr 04;9(4):e93832 [PMID: 24705400]
  62. J Biol Chem. 2012 Nov 23;287(48):40207-15 [PMID: 23038257]

Word Cloud

Created with Highcharts 10.0.0acetylcholinenAChRsreceptorsneuronalnon-neuronalcnidarianscontractionscnidarian-bilaterianrolerolesfunctionsnicotinicnAChRmuscariniccommonancestorbilateriandescribedsuggestcnidarianpatternstentacularnicotineinducedmecamylamineconsistentNicotiniclikelyevolvedreceptorknownchemicalsynapsesalsostudiesspatiotemporalexpressionsuppressedtentaclecontractionmusclesperistalticwavesresponsessupportsfunctionancestralBACKGROUND:familiesbestanimalssignalingwithinbilaterianscleareitherPreviousacetylcholine'sexistedpriordivergenceaddresspotentialdetermineoriginsinvestigatedphylogeneticpositioncharacterizedcomparedpharmacologicalpreviousworkRESULTS:Consistentactivitytreatmentacetylcholine-inducedseaanemonePhylogeneticanalysissuggestsgenomeencodes26mAChRsindependentlyradiatedlinagesnamesakeagonistsimilarobservedantagonistindicatedfactmediatedNicotineradialcontractpartpropagatealongoral-aboralaxistrunkRadialabilitymimicsuppressnicotine-inducedExaminationdevelopmentjuvenilepolypsidentifiedexpressedneuronsgonadslargedomainsdevelopmentalpatterningfunctioningcapacityCONCLUSION:datafunctionedregulateSimilarwelldocumentedsuggestingrepresentsExpressionTogetherobservationspresentThusspeciesarosenearbaseevolutionCharacterizationCholinergicCnidariaNvectensis

Similar Articles

Cited By