Ectopic Expression of Enhances Drought Tolerance and ABA Sensitivity in .

Nguyen Cao Nguyen, Xuan Lan Thi Hoang, Quang Thien Nguyen, Ngo Xuan Binh, Yasuko Watanabe, Nguyen Phuong Thao, Lam-Son Phan Tran
Author Information
  1. Nguyen Cao Nguyen: School of Biotechnology, International University-Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam.
  2. Xuan Lan Thi Hoang: School of Biotechnology, International University-Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam.
  3. Quang Thien Nguyen: School of Biotechnology, International University-Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam.
  4. Ngo Xuan Binh: Faculty of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 250000, Vietnam.
  5. Yasuko Watanabe: Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
  6. Nguyen Phuong Thao: School of Biotechnology, International University-Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam.
  7. Lam-Son Phan Tran: Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.

Abstract

The NAC (NAM, ATAF1/2, CUC2) transcription factors are widely known for their various functions in plant development and stress tolerance. Previous studies have demonstrated that genetic engineering can be applied to enhance drought tolerance via overexpression/ectopic expression of genes. In the present study, the dehydration- and drought-inducible from was ectopically expressed in (EX) plants to study its biological functions in mediating plant adaptation to water deficit conditions. Results revealed an improved drought tolerance in the transgenic plants, which displayed greater recovery rates by 20% to 54% than did the wild-type plants. In support of this finding, -EX plants exhibited lower water loss rates and decreased endogenous hydrogen peroxide production in leaf tissues under drought, as well as higher sensitivity to exogenous abscisic acid (ABA) treatment at germination and early seedling development stages. In addition, analyses of antioxidant enzymes indicated that EX plants possessed stronger activities of superoxide dismutase and catalase under drought stress. These results together demonstrated that GmNAC109 acts as a positive transcriptional regulator in the ABA-signaling pathway, enabling plants to cope with adverse water deficit conditions.

Keywords

References

  1. Front Plant Sci. 2013 May 13;4:138 [PMID: 23717320]
  2. BMC Plant Biol. 2015 Nov 04;15:268 [PMID: 26536863]
  3. BMC Plant Biol. 2016 Sep 20;16(1):203 [PMID: 27646344]
  4. Ann Bot. 2002 Jun;89 Spec No:841-50 [PMID: 12102510]
  5. Genet Mol Biol. 2012 Jul;35(3):640-9 [PMID: 23055804]
  6. Plant Cell Environ. 2013 Aug;36(8):1449-64 [PMID: 23356734]
  7. Front Plant Sci. 2015 Oct 29;6:902 [PMID: 26579152]
  8. BMC Genomics. 2007 Aug 01;8:260 [PMID: 17672917]
  9. Front Plant Sci. 2016 Jan 18;6:1174 [PMID: 26834757]
  10. Plant Cell. 2008 Jun;20(6):1693-707 [PMID: 18552202]
  11. Protoplasma. 2017 Mar;254(2):803-816 [PMID: 27352311]
  12. Physiol Plant. 2016 Sep;158(1):45-64 [PMID: 26991441]
  13. J Exp Bot. 2007;58(2):221-7 [PMID: 17075077]
  14. Plant J. 1998 Dec;16(6):735-43 [PMID: 10069079]
  15. PLoS One. 2014 Jan 28;9(1):e86895 [PMID: 24489802]
  16. BMC Plant Biol. 2011 Nov 17;11:163 [PMID: 22094046]
  17. Front Plant Sci. 2019 Jul 11;10:890 [PMID: 31354764]
  18. Plant Mol Biol. 2002 Sep;50(2):237-48 [PMID: 12175016]
  19. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  20. Environ Sci Pollut Res Int. 2018 Nov;25(33):33103-33118 [PMID: 30284160]
  21. Front Plant Sci. 2015 Jun 16;6:420 [PMID: 26136756]
  22. DNA Res. 2011 Aug;18(4):263-76 [PMID: 21685489]
  23. Front Plant Sci. 2014 Mar 13;5:86 [PMID: 24659993]
  24. Plant Sci. 2013 Apr;203-204:33-40 [PMID: 23415326]
  25. Front Plant Sci. 2016 Jul 14;7:1029 [PMID: 27471513]
  26. Curr Genomics. 2017 Dec;18(6):483-497 [PMID: 29204078]
  27. Plant Cell. 2011 Jun;23(6):2169-83 [PMID: 21719693]
  28. N Biotechnol. 2016 Sep 25;33(5 Pt B):692-705 [PMID: 26773738]
  29. Curr Opin Plant Biol. 2016 Oct;33:48-56 [PMID: 27314623]
  30. Sci Rep. 2019 Oct 23;9(1):15186 [PMID: 31645575]
  31. J Exp Bot. 2015 Nov;66(21):6803-17 [PMID: 26261267]
  32. Plant Mol Biol. 2000 Apr;42(6):819-32 [PMID: 10890530]
  33. Plant Physiol. 2017 Dec;175(4):1661-1668 [PMID: 29089393]
  34. Plant Physiol Biochem. 2019 Jun;139:504-512 [PMID: 31015089]
  35. Plant Cell. 2004 Sep;16(9):2481-98 [PMID: 15319476]
  36. Plant Biotechnol J. 2013 Jan;11(1):101-14 [PMID: 23094910]
  37. PLoS One. 2014 Jan 23;9(1):e84886 [PMID: 24465446]
  38. Plant Physiol. 2009 Jan;149(1):88-95 [PMID: 19126699]
  39. Plant Physiol Biochem. 2016 Aug;105:55-66 [PMID: 27085597]
  40. Gene. 2018 Jul 1;662:10-20 [PMID: 29631006]
  41. Front Microbiol. 2013 Sep 03;4:248 [PMID: 24058359]
  42. Int J Mol Sci. 2019 Jun 05;20(11):null [PMID: 31195663]
  43. J Exp Bot. 2016 Dec;67(22):6351-6362 [PMID: 27811005]
  44. Int J Mol Sci. 2013 Dec 06;14(12):23828-41 [PMID: 24322442]
  45. Mol Plant. 2011 Jul;4(4):697-712 [PMID: 21459832]
  46. Mol Plant Pathol. 2015 Feb;16(2):201-9 [PMID: 25040333]
  47. Mol Genet Genomics. 2009 Jun;281(6):647-64 [PMID: 19277718]
  48. Plant Physiol. 1977 Feb;59(2):309-14 [PMID: 16659839]
  49. Trends Plant Sci. 2005 Feb;10(2):88-94 [PMID: 15708346]
  50. Mol Biol Rep. 2014 Sep;41(9):5563-9 [PMID: 24985975]
  51. Plant Cell. 1994 Feb;6(2):251-64 [PMID: 8148648]
  52. Trends Plant Sci. 2012 Jun;17(6):369-81 [PMID: 22445067]
  53. Plant Cell. 1998 Aug;10(8):1391-406 [PMID: 9707537]
  54. Plant J. 2004 Sep;39(6):863-76 [PMID: 15341629]
  55. Microbiol Res. 2016 Mar;184:13-24 [PMID: 26856449]
  56. BMC Plant Biol. 2017 Feb 28;17(1):55 [PMID: 28241800]
  57. Dev Cell. 2008 Dec;15(6):913-22 [PMID: 19081078]
  58. Plant Cell Rep. 2012 Sep;31(9):1701-11 [PMID: 22610487]
  59. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  60. Front Plant Sci. 2017 Nov 28;8:2052 [PMID: 29234347]
  61. PLoS One. 2012;7(10):e47043 [PMID: 23118865]
  62. Anal Biochem. 1984 Jun;139(2):487-92 [PMID: 6476384]
  63. Front Plant Sci. 2017 Jun 30;8:1049 [PMID: 28713394]
  64. Plant J. 2003 Apr;34(2):137-48 [PMID: 12694590]
  65. J Agric Food Chem. 2019 Aug 14;67(32):8905-8918 [PMID: 31380641]
  66. Front Plant Sci. 2016 Jan 22;7:4 [PMID: 26834774]
  67. Plant Cell Rep. 2015 Jun;34(6):943-58 [PMID: 25666276]
  68. Plant Biotechnol J. 2017 Jun;15(6):754-764 [PMID: 27892643]
  69. BMC Plant Biol. 2012 Oct 11;12:188 [PMID: 23057782]
  70. BMC Biotechnol. 2016 May 11;16 Suppl 1:35 [PMID: 27213684]
  71. Sci Rep. 2015 Jun 15;5:11433 [PMID: 26073760]
  72. Plant Cell Environ. 2010 Apr;33(4):453-67 [PMID: 19712065]
  73. PLoS One. 2012;7(12):e52565 [PMID: 23285089]
  74. Plant Biotechnol J. 2018 Feb;16(2):354-366 [PMID: 28640975]

MeSH Term

Abscisic Acid
Arabidopsis
Droughts
Ectopic Gene Expression
Gene Expression Regulation, Plant
Plant Proteins
Plants, Genetically Modified
Glycine max
Stress, Physiological

Chemicals

Plant Proteins
Abscisic Acid

Word Cloud

Created with Highcharts 10.0.0plantsdroughttolerancewaterABAfunctionsplantdevelopmentstressdemonstratedexpressionstudyEXdeficitconditionsratesGmNAC109NACNAMATAF1/2CUC2transcriptionfactorswidelyknownvariousPreviousstudiesgeneticengineeringcanappliedenhanceviaoverexpression/ectopicgenespresentdehydration-drought-inducibleectopicallyexpressedbiologicalmediatingadaptationResultsrevealedimprovedtransgenicdisplayedgreaterrecovery20%54%wild-typesupportfinding-EXexhibitedlowerlossdecreasedendogenoushydrogenperoxideproductionleaftissueswellhighersensitivityexogenousabscisicacidtreatmentgerminationearlyseedlingstagesadditionanalysesantioxidantenzymesindicatedpossessedstrongeractivitiessuperoxidedismutasecatalaseresultstogetheractspositivetranscriptionalregulatorABA-signalingpathwayenablingcopeadverseEctopicExpressionEnhancesDroughtToleranceSensitivityArabidopsisGlycinemaxectopic

Similar Articles

Cited By