Evolutionary games on isothermal graphs.

Benjamin Allen, Gabor Lippner, Martin A Nowak
Author Information
  1. Benjamin Allen: Department of Mathematics, Emmanuel College, 400 The Fenway, Boston, MA, 02115, USA. allenb@emmanuel.edu. ORCID
  2. Gabor Lippner: Department of Mathematics, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
  3. Martin A Nowak: Program for Evolutionary Dynamics, Harvard University, One Brattle Square, Cambridge, MA, 02138, USA.

Abstract

Population structure affects the outcome of natural selection. These effects can be modeled using evolutionary games on graphs. Recently, conditions were derived for a trait to be favored under weak selection, on any weighted graph, in terms of coalescence times of random walks. Here we consider isothermal graphs, which have the same total edge weight at each node. The conditions for success on isothermal graphs take a simple form, in which the effects of graph structure are captured in the 'effective degree'-a measure of the effective number of neighbors per individual. For two update rules (death-Birth and birth-Death), cooperative behavior is favored on a large isothermal graph if the benefit-to-cost ratio exceeds the effective degree. For two other update rules (Birth-death and Death-birth), cooperation is never favored. We relate the effective degree of a graph to its spectral gap, thereby linking evolutionary dynamics to the theory of expander graphs. Surprisingly, we find graphs of infinite average degree that nonetheless provide strong support for cooperation.

References

  1. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15636-41 [PMID: 26644569]
  2. Nat Commun. 2014 Mar 06;5:3409 [PMID: 24598979]
  3. Genetics. 1943 Mar;28(2):114-38 [PMID: 17247074]
  4. J Theor Biol. 2009 Aug 7;259(3):570-81 [PMID: 19358858]
  5. Phys Rev E. 2016 Feb;93(2):022407 [PMID: 26986362]
  6. Evolution. 2011 Mar;65(3):849-59 [PMID: 21044061]
  7. PLoS Comput Biol. 2016 Aug 11;12(8):e1005059 [PMID: 27513946]
  8. J Theor Biol. 2008 Jun 21;252(4):694-710 [PMID: 18371985]
  9. PLoS Comput Biol. 2015 Feb 26;11(2):e1004108 [PMID: 25719560]
  10. J R Soc Interface. 2019 Mar 29;16(152):20180677 [PMID: 30862280]
  11. Elife. 2013 Dec 17;2:e01169 [PMID: 24347543]
  12. J Theor Biol. 2014 Jan 7;340:285-93 [PMID: 24096097]
  13. Phys Rev Lett. 2005 Aug 26;95(9):098104 [PMID: 16197256]
  14. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  15. Phys Rev Lett. 2000 Nov 20;85(21):4633-6 [PMID: 11082614]
  16. Ecol Lett. 2008 Mar;11(3):277-95 [PMID: 18070102]
  17. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  18. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  19. PLoS One. 2013 May 17;8(5):e63304 [PMID: 23691017]
  20. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041121 [PMID: 18517592]
  21. Nature. 2008 Jul 10;454(7201):213-6 [PMID: 18615084]
  22. Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1833-8 [PMID: 25624490]
  23. Ecol Lett. 2014 Dec;17(12):1536-44 [PMID: 25250530]
  24. Science. 2009 Jan 9;323(5911):272-5 [PMID: 19131632]
  25. Nat Hum Behav. 2018 Jul;2(7):492-499 [PMID: 31097804]
  26. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12577-82 [PMID: 23858453]
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jun;63(6 Pt 2):066123 [PMID: 11415189]
  28. J Math Biol. 2019 Mar;78(4):1147-1210 [PMID: 30430219]
  29. J Exp Biol. 2017 Jan 1;220(Pt 1):18-24 [PMID: 28057824]
  30. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9340-6 [PMID: 10922082]
  31. J Theor Biol. 2009 Mar 21;257(2):340-4 [PMID: 19111558]
  32. Nature. 2004 Apr 8;428(6983):646-50 [PMID: 15071593]
  33. J Theor Biol. 2017 May 7;420:26-35 [PMID: 28254478]
  34. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  35. Nature. 2009 May 14;459(7244):253-6 [PMID: 19349960]
  36. Phys Rev Lett. 2006 May 12;96(18):188104 [PMID: 16712402]
  37. Nature. 2007 May 24;447(7143):469-72 [PMID: 17522682]
  38. Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):19-30 [PMID: 20008382]
  39. Genetics. 1964 Apr;49(4):561-76 [PMID: 17248204]
  40. Nat Rev Microbiol. 2016 Sep;14(9):589-600 [PMID: 27452230]

MeSH Term

Biological Evolution
Computer Simulation
Cooperative Behavior
Demography
Game Theory
Humans
Models, Theoretical
Population Dynamics
Selection, Genetic
Social Behavior

Word Cloud

Created with Highcharts 10.0.0graphsgraphisothermalfavoredeffectivedegreestructureselectioneffectsevolutionarygamesconditionstwoupdaterulescooperationPopulationaffectsoutcomenaturalcanmodeledusingRecentlyderivedtraitweakweightedtermscoalescencetimesrandomwalksconsidertotaledgeweightnodesuccesstakesimpleformcaptured'effectivedegree'-ameasurenumberneighborsperindividualdeath-Birthbirth-Deathcooperativebehaviorlargebenefit-to-costratioexceedsBirth-deathDeath-birthneverrelatespectralgaptherebylinkingdynamicstheoryexpanderSurprisinglyfindinfiniteaveragenonethelessprovidestrongsupportEvolutionary

Similar Articles

Cited By