Regression adjusted colocalisation colour mapping (RACC): A novel biological visual analysis method for qualitative colocalisation analysis of 3D fluorescence micrographs.

Rensu P Theart, Ben Loos, Thomas R Niesler
Author Information
  1. Rensu P Theart: Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
  2. Ben Loos: Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
  3. Thomas R Niesler: Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa. ORCID

Abstract

The qualitative analysis of colocalisation in fluorescence microscopy is of critical importance to the understanding of biological processes and cellular function. However, the degree of accuracy achieved may differ substantially when executing different yet commonly utilized colocalisation analyses. We propose a novel biological visual analysis method that determines the correlation within the fluorescence intensities and subsequently uses this correlation to assign a colourmap value to each voxel in a three-dimensional sample while also highlighting volumes with greater combined fluorescence intensity. This addresses the ambiguity and variability which can be introduced into the visualisation of the spatial distribution of correlation between two fluorescence channels when the colocalisation between these channels is not considered. Most currently employed and generally accepted methods of visualising colocalisation using a colourmap can be negatively affected by this ambiguity, for example by incorrectly indicating non-colocalised voxels as positively correlated. In this paper we evaluate the proposed method by applying it to both synthetic data and biological fluorescence micrographs and demonstrate how it can enhance the visualisation in a robust way by visualising only truly colocalised regions using a colourmap to indicate the qualitative measure of the correlation between the fluorescence intensities. This approach may substantially support fluorescence microscopy applications in which precise colocalisation analysis is of particular relevance.

Associated Data

figshare | 10.6084/m9.figshare.8052425.v1

References

  1. Dev Cell. 2012 Sep 11;23(3):560-72 [PMID: 22975325]
  2. Biophys J. 2010 Feb 3;98(3):493-504 [PMID: 20141764]
  3. Autophagy. 2013 Sep;9(9):1270-85 [PMID: 23846383]
  4. PLoS One. 2015 Oct 13;10(10):e0139957 [PMID: 26460749]
  5. Clin Chem. 1979 Mar;25(3):432-8 [PMID: 262186]
  6. Neurobiol Dis. 2009 May;34(2):245-58 [PMID: 19385056]
  7. Autophagy. 2018;14(6):1060-1071 [PMID: 29909716]
  8. Cells. 2018 Aug 03;7(8):null [PMID: 30081508]
  9. PLoS One. 2011 Apr 29;6(4):e19031 [PMID: 21559502]
  10. Biophys J. 2004 Jun;86(6):3993-4003 [PMID: 15189895]
  11. Sci Rep. 2017 Sep 5;7(1):10563 [PMID: 28874824]
  12. J Histochem Cytochem. 2005 Aug;53(8):941-53 [PMID: 16055748]
  13. BMC Bioinformatics. 2017 Feb 15;18(Suppl 2):64 [PMID: 28251867]
  14. PLoS One. 2018 Aug 29;13(8):e0201965 [PMID: 30157239]
  15. Biophys J. 2005 Sep;89(3):1893-901 [PMID: 15980179]
  16. Am J Physiol Cell Physiol. 2011 Apr;300(4):C723-42 [PMID: 21209361]
  17. J Neurosci. 2013 Aug 28;33(35):14269-81 [PMID: 23986260]
  18. Mol Cell Biol. 2014 Jan;34(2):196-209 [PMID: 24190970]
  19. J Cell Biol. 2012 Sep 17;198(6):1055-73 [PMID: 22965911]
  20. J Microsc. 2006 Dec;224(Pt 3):213-32 [PMID: 17210054]
  21. Acta Histochem Cytochem. 2007 Aug 30;40(4):101-11 [PMID: 17898874]
  22. J Neurosci Methods. 2005 Jul 15;146(1):42-9 [PMID: 15935219]

MeSH Term

Algorithms
Image Processing, Computer-Assisted
Microscopy, Confocal
Microscopy, Fluorescence
Regression Analysis

Word Cloud

Created with Highcharts 10.0.0fluorescencecolocalisationanalysisbiologicalcorrelationqualitativemethodcolourmapcanmicroscopymaysubstantiallynovelvisualintensitiesambiguityvisualisationchannelsvisualisingusingmicrographscriticalimportanceunderstandingprocessescellularfunctionHoweverdegreeaccuracyachieveddifferexecutingdifferentyetcommonlyutilizedanalysesproposedetermineswithinsubsequentlyusesassignvaluevoxelthree-dimensionalsamplealsohighlightingvolumesgreatercombinedintensityaddressesvariabilityintroducedspatialdistributiontwoconsideredcurrentlyemployedgenerallyacceptedmethodsnegativelyaffectedexampleincorrectlyindicatingnon-colocalisedvoxelspositivelycorrelatedpaperevaluateproposedapplyingsyntheticdatademonstrateenhancerobustwaytrulycolocalisedregionsindicatemeasureapproachsupportapplicationspreciseparticularrelevanceRegressionadjustedcolourmappingRACC:3D

Similar Articles

Cited By