Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides resource for osmoregulation studies.

Vindhya Mohindra, Tanushree Dangi, Ratnesh K Tripathi, Rajesh Kumar, Rajeev K Singh, J K Jena, T Mohapatra
Author Information
  1. Vindhya Mohindra: ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India. vindhyamohindra@gmail.com. ORCID
  2. Tanushree Dangi: ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
  3. Ratnesh K Tripathi: ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
  4. Rajesh Kumar: ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
  5. Rajeev K Singh: ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
  6. J K Jena: Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India.
  7. T Mohapatra: Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India.

Abstract

This study provides the first high-quality draft genome assembly (762.5 Mb) of Tenualosa ilisha that is highly contiguous and nearly complete. We observed a total of 2,864 contigs, with 96.4% completeness with N of 2.65 Mbp and the largest contig length of 17.4 Mbp, along with a complete mitochondrial genome of 16,745 bases. A total number of 33,042 protein coding genes were predicted, among these, 512 genes were classified under 61 Gene Ontology (GO) terms, associated with various homeostasis processes. Highest number of genes belongs to cellular calcium ion homeostasis, followed by tissue homeostasis. A total of 97 genes were identified, with 16 GO terms related to water homeostasis. Claudins, Aquaporins, Connexins/Gap junctions, Adenylate cyclase, Solute carriers and Voltage gated potassium channel genes were observed to be higher in number in T. ilisha, as compared to that in other teleost species. Seven novel gene variants, in addition to claudin gene (CLDZ), were found in T. ilisha. The present study also identified two putative novel genes, NKAIN3 and L4AM1, for the first time in fish, for which further studies are required for pinpointing their functions in fish. In addition, 1.6 million simple sequence repeats were mined from draft genome assembly. The study provides a valuable genomic resource for the anadromous Hilsa. It will form a basis for future studies, pertaining to its adaptation mechanisms to different salinity levels during migration, which in turn would facilitate in its domestication.

References

  1. Mol Biol Evol. 2013 Nov;30(11):2531-40 [PMID: 23955518]
  2. Front Physiol. 2014 Jul 22;5:266 [PMID: 25101003]
  3. BMC Genomics. 2018 Feb 13;19(1):141 [PMID: 29439662]
  4. J Fish Biol. 2015 Jul;87(1):28-42 [PMID: 26040212]
  5. BMC Bioinformatics. 2013 Jun 07;14:186 [PMID: 23758809]
  6. Nature. 2014 Mar 27;507(7493):462-70 [PMID: 24670764]
  7. Front Cell Dev Biol. 2017 Feb 21;5:13 [PMID: 28271062]
  8. Dev Biol. 2011 Jan 1;349(1):1-19 [PMID: 20880496]
  9. Biochem Genet. 2012 Jun;50(5-6):454-66 [PMID: 22205502]
  10. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 [PMID: 16845043]
  11. PLoS One. 2016 Feb 01;11(2):e0148113 [PMID: 26828928]
  12. Elife. 2016 May 03;5: [PMID: 27138043]
  13. Am J Physiol Regul Integr Comp Physiol. 2012 Mar 1;302(5):R568-76 [PMID: 22204952]
  14. J Gen Physiol. 2007 Jan;129(1):1-16 [PMID: 17158950]
  15. Fish Physiol Biochem. 2018 Apr;44(2):423-433 [PMID: 29344774]
  16. Gen Comp Endocrinol. 2002 Feb 1;125(2):291-310 [PMID: 11884075]
  17. Traffic. 2009 Sep;10(9):1272-85 [PMID: 19548984]
  18. Med Mol Morphol. 2005 Mar;38(1):2-12 [PMID: 16158173]
  19. Nucleic Acids Res. 2019 Jan 8;47(D1):D590-D595 [PMID: 30321428]
  20. BMC Genomics. 2010 Aug 17;11:476 [PMID: 20716350]
  21. Genome Res. 2004 Jul;14(7):1248-57 [PMID: 15197168]
  22. Bioinformatics. 2017 Aug 15;33(16):2583-2585 [PMID: 28398459]
  23. Comp Biochem Physiol C Toxicol Pharmacol. 2008 Nov;148(4):419-29 [PMID: 18539088]
  24. BMC Genomics. 2014 Oct 23;15:921 [PMID: 25342237]
  25. Nephron. 2016;134(1):5-9 [PMID: 26901864]
  26. PLoS One. 2015 Jul 15;10(7):e0132628 [PMID: 26177194]
  27. Cell Physiol Biochem. 2010;25(6):733-44 [PMID: 20511719]
  28. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  29. Nucleic Acids Res. 2008 Jun;36(10):3420-35 [PMID: 18445632]
  30. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 [PMID: 15961478]
  31. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11059-64 [PMID: 12960396]
  32. Am J Physiol Regul Integr Comp Physiol. 2012 Jan 15;302(2):R300-11 [PMID: 21975646]
  33. J Comp Physiol B. 2019 Feb;189(1):69-80 [PMID: 30483930]
  34. Channels (Austin). 2007 Mar-Apr;1(2):62-9 [PMID: 18690016]
  35. Genome Res. 2006 Sep;16(9):1159-68 [PMID: 16951135]
  36. Life Sci. 1987 Jul 6;41(1):71-8 [PMID: 3110522]
  37. Nat Commun. 2014 Dec 23;5:5770 [PMID: 25534655]
  38. J Exp Biol. 2005 Nov;208(Pt 22):4291-304 [PMID: 16272252]
  39. Genomics. 2006 Feb;87(2):265-74 [PMID: 16337772]
  40. J Biol Chem. 2001 Jun 22;276(25):23161-72 [PMID: 11294880]
  41. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  42. J Hered. 2011 Sep-Oct;102(5):499-511 [PMID: 20581107]
  43. PLoS One. 2017 Mar 2;12(3):e0173238 [PMID: 28253338]
  44. BMC Evol Biol. 2010 Feb 11;10:38 [PMID: 20149227]
  45. J Exp Biol. 2014 May 15;217(Pt 10):1758-67 [PMID: 24526724]
  46. BMC Evol Biol. 2008 Sep 23;8:259 [PMID: 18811940]
  47. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 [PMID: 27899662]
  48. Am J Physiol Regul Integr Comp Physiol. 2005 Aug;289(2):R575-R585 [PMID: 15802556]
  49. J Exp Biol. 2010 Feb 1;213(3):368-79 [PMID: 20086120]
  50. Transl Psychiatry. 2019 Feb 11;9(1):77 [PMID: 30741946]
  51. J Exp Biol. 2018 Jan 11;221(Pt 1): [PMID: 29150449]
  52. F1000Res. 2019 Mar 22;8:320 [PMID: 31602298]
  53. Comp Biochem Physiol A Mol Integr Physiol. 2010 Mar;155(3):361-70 [PMID: 19969100]
  54. Nucleic Acids Res. 2002 Jun 1;30(11):2478-83 [PMID: 12034836]
  55. J Cell Biochem. 2013 Nov;114(11):2542-50 [PMID: 23744706]
  56. Am J Physiol Renal Physiol. 2010 Mar;298(3):F485-99 [PMID: 19923405]
  57. Environ Toxicol Chem. 2017 Mar;36(3):576-600 [PMID: 27808448]
  58. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  59. Physiol Rev. 2013 Apr;93(2):525-69 [PMID: 23589827]
  60. J Biol Chem. 2004 Feb 13;279(7):5867-76 [PMID: 14625281]
  61. J Comp Physiol B. 2009 May;179(4):419-31 [PMID: 19112569]
  62. Nucleic Acids Res. 2010 Jan;38(Database issue):D492-6 [PMID: 19854944]
  63. Hum Mol Genet. 2016 Feb 15;25(4):681-92 [PMID: 26662798]
  64. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  65. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  66. BMC Res Notes. 2018 Dec 22;11(1):921 [PMID: 30577879]
  67. FEBS J. 2007 Nov;274(22):5790-8 [PMID: 17944942]
  68. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  69. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  70. PLoS One. 2015 Oct 06;10(10):e0139938 [PMID: 26439495]
  71. J Exp Biol. 2015 Jun;218(Pt 12):1907-14 [PMID: 26085667]
  72. Nature. 2012 Apr 04;484(7392):55-61 [PMID: 22481358]
  73. Neurosci Lett. 2008 May 30;437(2):135-8 [PMID: 18440145]
  74. Nature. 2013 Apr 18;496(7445):311-6 [PMID: 23598338]
  75. Genome Biol. 2015 Aug 06;16:157 [PMID: 26243257]
  76. Bioinformatics. 2009 May 15;25(10):1329-30 [PMID: 19349283]
  77. PLoS One. 2014 Sep 29;9(9):e106894 [PMID: 25265477]

MeSH Term

Adaptation, Biological
Animals
Computational Biology
Conserved Sequence
Fishes
Gene Expression Profiling
Genome
Genome, Mitochondrial
Genomics
Homeostasis
Molecular Sequence Annotation
Multigene Family
Osmoregulation
Repetitive Sequences, Nucleic Acid

Word Cloud

Created with Highcharts 10.0.0genesgenomeilishahomeostasisstudyprovidesassemblytotalnumberstudiesfirstdraftTenualosacompleteobserved2Mbp16GOtermsidentifiedTnovelgeneadditionfishresourceHilsahigh-quality7625Mbhighlycontiguousnearly864contigs964%completenessN65largestcontiglength174alongmitochondrial745bases33042proteincodingpredictedamong512classified61GeneOntologyassociatedvariousprocessesHighestbelongscellularcalciumionfollowedtissue97relatedwaterClaudinsAquaporinsConnexins/GapjunctionsAdenylatecyclaseSolutecarriersVoltagegatedpotassiumchannelhighercomparedteleostspeciesSevenvariantsclaudinCLDZfoundpresentalsotwoputativeNKAIN3L4AM1timerequiredpinpointingfunctions16millionsimplesequencerepeatsminedvaluablegenomicanadromouswillformbasisfuturepertainingadaptationmechanismsdifferentsalinitylevelsmigrationturnfacilitatedomesticationDraftshadosmoregulation

Similar Articles

Cited By (9)