Genome-wide analysis of the Chinese sturgeon sox gene family: identification, characterisation and expression profiles of different tissues.

Jing Yang, Yacheng Hu, Jilu Han, Kan Xiao, Xueqing Liu, Chun Tan, Qingkai Zeng, Hejun Du
Author Information
  1. Jing Yang: Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China. ORCID
  2. Yacheng Hu: Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China.
  3. Jilu Han: China Three Gorges Corporation, Yichang, China.
  4. Kan Xiao: Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China.
  5. Xueqing Liu: Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China.
  6. Chun Tan: Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China.
  7. Qingkai Zeng: Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China.
  8. Hejun Du: Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China.

Abstract

The sox family is assumed to be responsible for a number of developmental systems. Genome sequencing technology makes it possible to scan sox genes and conduct characteristic analyses of different species. In fish, full characterisation of sox genes at the genome-wide level has been reported for pufferfish Takifugu rubripes, medaka Oryzias latipes, tilapia Oreochromis niloticus and channel catfish Ictalurus punctatus. However, no systematic investigation of the sox family in sturgeons (Acipenseridae) has been reported to date. This study conducted genome-wide identification of the sox genes in the Chinese sturgeon Acipenser sinensis and profiled their tissue distribution between male and female individuals. In total, 19 sox genes were identified, including soxb1, b2, c, d, e, f and h, in the Chinese sturgeon. Genomic structure analysis indicated relatively conserved exon-intron structures in each sox group and phylogenetic analysis supported the previous classification of the sox family. Most of the sox genes showed a tissue-specific expression pattern, indicating the possible involvement of Chinese sturgeon sox genes at different developmental processes such as cardiac and gonadal development. This study provides a comprehensive resource of Chinese sturgeon sox genes and enables a better understanding of the evolution and function of the sox family.

Keywords

References

  1. Artus, J., Piliszek, A., & Hadjantonakis, A. K. (2011). The primitive endoderm lineage of the mouse blastocyst: Sequential transcription factor activation and regulation of differentiation by sox17. Developmental Biology, 350, 393-404.
  2. Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., … Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37, W202-W208.
  3. Barrionuevo, F., Georg, I., Scherthan, H., Lecureuil, C., Guillou, F., Wegner, M., & Scherer, G. (2009). Testis cord differentiation after the sex determination stage is independent of sox9 but fails in the combined absence of sox9 and sox8. Developmental Biology, 327, 301-312.
  4. Barrionuevo, F., & Scherer, G. (2010). SOX E genes: SOX9 and SOX8 in mammalian testis development. International Journal of Biochemistry and Cell Biology, 42, 433-436.
  5. Bowles, J., Schepers, G., & Koopman, P. (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology, 227, 239-255.
  6. Chen, C., Xia, R., Chen, H., & He, Y. (2018). TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv, 27, 289660.
  7. Cui, J., Shen, X., Zhao, H., & Nagahama, Y. (2011). Genome-wide analysis of sox genes in Medaka (Oryzias latipes) and their expression pattern in embryonic development. Cytogenetic and Genome Research, 134, 283-294.
  8. Domyan, E. T., Ferretti, E., Throckmorton, K., Mishina, Y., Nicolis, S. K., & Sun, X. (2011). Signaling through BMP receptors promotes respiratory identity in the foregut via repression of sox2. Development, 138, 971-981.
  9. Dy, P., Penzo-Mendez, A., Wang, H., Pedraza, C. E., Macklin, W. B., & Lefebvre, V. (2008). The three SoxC proteins-Sox4, Sox11 and Sox12-exhibit overlapping expression patterns and molecular properties. Nucleic Acids Research, 36, 3101-3117.
  10. Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 39, W29-W37.
  11. Fortna, A., Kim, Y., MacLaren, E., Marshall, K., Hahn, G., Meltesen, L., … Sikela, J. M. (2004). Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biology, 2, E207.
  12. Foster, J. W., & Graves, J. A. (1994). An SRY-related sequence on the marsupial X chromosome: Implications for the evolution of the mammalian testis-determining gene. Proceedings of the National Academy of Sciences of the United States of America, 91, 1927-1931.
  13. Francois, M., Koopman, P., & Beltram, M. (2010). soxf genes: Key players in the development of the cardio vascular system. International Journal of Biochemistry and Cell Biology, 42, 445-448.
  14. Freeling, M., & Thomas, B. C. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16, 805-814.
  15. Guth, S. I. E., & Wegner, M. (2008). Having it both ways: Sox protein function between conservation and innovation. Cellular and Molecular Life Sciences, 65, 3000-3018.
  16. Han, F., Wang, Z., Wu, F., Liu, Z., Huang, B., & Wang, D. (2010). Characterisation, phylogeny, alternative splicing and expression of sox30 gene. BMC Molecular Biology, 11, 98.
  17. Heenan, P., Zondag, L., & Wilson, M. J. (2016). Evolution of the sox family within the chordate phylum. Gene, 575, 385-392.
  18. Hosking, B., François, M., Wilhelm, D., Orsenigo, F., Caprini, A., Svingen, T., et al. (2009). sox7 and sox17 are strain-specific modifiers of the lymphangiogenic defects caused by sox18 dysfunction in mice. Development, 136, 2385-2391.
  19. Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31, 1296-1297.
  20. Kamachi, Y., & Kondoh, H. (2013). Sox proteins: Regulators of cell fate specification and differentiation. Development, 140, 4129-4144.
  21. Kamachi, Y., Uchikawa, M., & Kondoh, H. (2000). Pairing SOX off: With partners in the regulation of embryonic development. Trends in Genetics, 16, 182-187.
  22. Kashimada, K., & Koopman, P. (2010). SRY: The master switch in mammalian sex determination. Development, 137, 3921-3930.
  23. Koopman, P., Schepers, G., Brenner, S., & Venkatesh, B. (2004). Origin and diversity of the sox transcription factor gene family: Genome-wide analysis in Fugu rubripes. Gene, 328, 177-186.
  24. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
  25. Lefebvre, V. (2010). The soxd transcription factors - sox5, sox6 and sox13 - are key cell fate modulators. International Journal of Biochemistry and Cell Biology, 42, 429-432.
  26. Niimi, T., Hayashi, Y., Futaki, S., & Sekiguchi, K. (2004). SOX7 and SOX17 regulate the parietal endoderm-specific enhancer activity of mouse laminin alpha1 gene. Journal of Biological Chemistry, 279, 38055-38061.
  27. Okuda, Y., Yoda, H., Uchikawa, M., Furutani-Seiki, M., Takeda, H., Kondoh, H., & Kamachi, Y. (2006). Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Developmental Dynamics, 235, 811-825.
  28. Osaki, E., Yoshida, M., Semba, K., Ohsugi, M., Tezuka, T., Nishina, Y., … Copeland, N. G. (1999). Identification of a novel SRY-related gene and its germ cell-specific expression. Nucleic Acids Research, 27, 2503-2510.
  29. Pevny, L., & Placzek, M. (2005). SOX genes and neural progenitor identity. Current Opinion in Neurobiology, 15, 7-13.
  30. Phochanukul, N., & Russell, S. (2010). No backbone but lots of sox: Invertebrate sox genes. International Journal of Biochemistry and Cell Biology, 42, 453-464.
  31. Que, J., Okubo, T., Goldenring, J. R., Nam, K. T., Kurotani, R., Morrisey, E. E., … Hogan, B. L. (2007). Multiple dose-dependent roles for sox2 in the patterning and differentiation of anterior foregut endoderm. Development, 134, 2521-2531. https://doi.org/10.1242/dev.003855.
  32. Sakamoto, Y., Hara, K., Kanai-Azuma, M., Matsui, T., Miura, Y., Tsunekawa, N., … Kanai, Y. (2007). Redundant roles of sox17 and sox18 in early cardiovascular development of mouse embryos. Biochemical and Biophysical Research Communications, 360, 539-544.
  33. Sarkar, A., & Hochedlinger, K. (2013). The sox family of transcription factors: Versatile regulators of stem and progenitor cell fate. Cell Stem Cell, 12, 15-30.
  34. Schepers, G. E., Teasdale, R. D., & Koopman, P. (2002). Twenty pairs of sox: Extent, homology and nomenclature of the mouse and human sox transcription factor gene families. Developmental Cell, 3, 167-170.
  35. She, Z. Y., & Yang, W. X. (2015). SOX family transcription factors involved in diverse cellular events during development. European Journal of Cell Biology, 94, 547-563.
  36. Smits, P., Dy, P., Mitra, S., & Lefebvre, V. (2004). sox5 and sox6 are needed to develop and maintain source, columnar and hypertrophic chondrocytes in the cartilage formation. Developmental Cell, 1, 277-290.
  37. Stevanovlć, M., Goodfellow, P. N., Collignon, J., & Lovell-Badge, R. (1993). SOX3 is an X-linked gene related to SRY. Human Molecular Genetics, 2, 2013-2018.
  38. Štros, M., Launholt, D., & Grasser, K. D. (2007). The HMG-box: A versatile protein domain occurring in a wide variety of DNA-binding proteins. Cellular and Molecular Life Sciences, 64, 2590-2606.
  39. Uchikawa, M., Kamachi, Y., & Kondoh, H. (1999). Two distinct subgroups of group B sox genes for transcriptional activators and repressors: Their expression during embryonic organogenesis of the chicken. Mechanisms of Development, 84, 103-120.
  40. Vandepoele, K., De Vos, W., Taylor, J. S., Meyer, A., & Van de Peer, Y. (2004). Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 101, 1638-1643.
  41. Wegner, M. (2010). All purpose sox: The many roles of Sox proteins in gene expression. International Journal of Biochemistry and Cell Biology, 42, 381-390.
  42. Wei, L., Yang, C., Tao, W., & Wang, D. (2016). Genome-wide identification and transcriptome-based expression profiling of the sox family in the nile tilapia (Oreochromis niloticus). International Journal of Molecular Sciences, 17, 270.
  43. Weiss, J., Meeks, J. J., Hurley, L., Raverot, G., Frassetto, A., & Jameson, J. L. (2003). sox3 is required for gonadal function, but not sex determination, in males and females. Molecular and Cellular Biology, 23, 8084-8091.
  44. Yang, J., Hu, Y., Xiao, K., Liu, X., Tan, C., Wang, B., & Du, H. (2018). Transcriptome profiling reveals candidate cleft palate-related genes in cultured Chinese sturgeons (Acipenser sinensis). Gene, 666, 1-8.
  45. Yu, J., Zhang, L., Li, Y., Li, R., Zhang, M., Li, W., … Bao, Z. (2017). Genome-wide identification and expression profiling of the SOX gene family in a bivalve mollusc Patinopecten yessoensis. Gene, 627, 530-537.
  46. Zhang, S., Chen, X., Wang, M., Zhang, W., Pan, J., Qin, Q., et al. (2018). Genome-wide identification, phylogeny and expressional profile of the sox family in channel catfish (Ictalurus punctatus). Comparative Biochemistry and Physiology D, 28, 17-26.
  47. Zhuang, P., Kynard, B., Zhang, L., Zhang, T., & Cao, W. (2002). Ontogenetic behavior and migration of Chinese sturgeon, Acipenser sinensis. Environmental Biology of Fishes, 65, 83-97.

Grants

  1. /Our research was supported by the Three Gorges Environmental Funds of the Chinese Three Gorges Corporation (XN270).

MeSH Term

Animals
Female
Fishes
Genome
Gonads
Heart
Male
Phylogeny
Real-Time Polymerase Chain Reaction
SOX Transcription Factors
Transcriptome

Chemicals

SOX Transcription Factors

Word Cloud

Created with Highcharts 10.0.0soxgenesChinesesturgeonfamilyanalysisdifferentexpressiondevelopmentalpossiblecharacterisationgenome-widereportedstudyidentificationAcipensersinensisphylogeneticassumedresponsiblenumbersystemsGenomesequencingtechnologymakesscanconductcharacteristicanalysesspeciesfishfulllevelpufferfishTakifugurubripesmedakaOryziaslatipestilapiaOreochromisniloticuschannelcatfishIctaluruspunctatusHoweversystematicinvestigationsturgeonsAcipenseridaedateconductedprofiledtissuedistributionmalefemaleindividualstotal19identifiedincludingsoxb1b2cdefhGenomicstructureindicatedrelativelyconservedexon-intronstructuresgroupsupportedpreviousclassificationshowedtissue-specificpatternindicatinginvolvementprocessescardiacgonadaldevelopmentprovidescomprehensiveresourceenablesbetterunderstandingevolutionfunctionGenome-widegenefamily:profilestissues

Similar Articles

Cited By