Glucocorticoid and β-adrenergic regulation of hippocampal dendritic spines.

Sylvie L Lesuis, Wendy Timmermans, Paul J Lucassen, Casper C Hoogenraad, Harm J Krugers
Author Information
  1. Sylvie L Lesuis: SILS-CNS, Universiteit van Amsterdam, Amsterdam, The Netherlands.
  2. Wendy Timmermans: SILS-CNS, Universiteit van Amsterdam, Amsterdam, The Netherlands.
  3. Paul J Lucassen: SILS-CNS, Universiteit van Amsterdam, Amsterdam, The Netherlands.
  4. Casper C Hoogenraad: Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
  5. Harm J Krugers: SILS-CNS, Universiteit van Amsterdam, Amsterdam, The Netherlands. ORCID

Abstract

Glucocorticoid hormones are particularly potent with respect to enhancing memory formation. Notably, this occurs in close synergy with arousal (i.e., when norepinephrine levels are enhanced). In the present study, we examined whether glucocorticoid and norepinephrine hormones regulate the number of spines in hippocampal primary neurons. We report that brief administration of corticosterone or the β-adrenergic receptor agonist isoproterenol alone increases spine number. This effect becomes particularly prominent when corticosterone and isoproterenol are administered together. In parallel, corticosterone and isoproterenol alone increased the amplitude of miniature excitatory postsynaptic currents, an effect that is not amplified when both hormones are administered together. The effects of co-application of corticosterone and isoproterenol on spines could be prevented by blocking the glucocorticoid receptor antagonist RU486. Taken together, both corticosterone and β-adrenergic receptor activation increase spine number, and they exert additive effects on spine number for which activation of glucocorticoid receptors is permissive.

Keywords

References

  1. PLoS One. 2012;7(4):e34124 [PMID: 22509272]
  2. Front Neural Circuits. 2013 Nov 27;7:191 [PMID: 24348341]
  3. J Neurosci. 2005 Mar 30;25(13):3294-303 [PMID: 15800184]
  4. Nat Neurosci. 2005 Jul;8(7):906-15 [PMID: 15965473]
  5. Neurobiol Learn Mem. 2019 May;161:72-82 [PMID: 30930287]
  6. J Cell Biol. 1998 Jul 27;142(2):499-509 [PMID: 9679147]
  7. Brain Res. 1994 May 30;647(1):106-12 [PMID: 8069692]
  8. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6741-6 [PMID: 16611726]
  9. Neurobiol Learn Mem. 2010 Jan;93(1):56-65 [PMID: 19695335]
  10. Nat Rev Neurosci. 2011 Nov 30;13(1):22-37 [PMID: 22127301]
  11. Mol Psychiatry. 2011 Feb;16(2):156-70 [PMID: 20458323]
  12. J Biol Chem. 2010 Feb 26;285(9):6101-8 [PMID: 20051515]
  13. J Comp Neurol. 2016 Dec 15;524(18):3729-3746 [PMID: 27113541]
  14. Neurosci Lett. 2017 Jan 1;636:158-164 [PMID: 27838449]
  15. Nat Neurosci. 2008 Aug;11(8):868-70 [PMID: 18622402]
  16. J Neurosci. 2000 Nov 15;20(22):8596-606 [PMID: 11069968]
  17. Behav Neurosci. 1992 Feb;106(1):62-71 [PMID: 1313244]
  18. Nat Rev Neurosci. 2009 Jun;10(6):459-66 [PMID: 19339973]
  19. Acta Physiol (Oxf). 2018 Jun;223(2):e13066 [PMID: 29575542]
  20. Hippocampus. 2016 Jul;26(7):848-56 [PMID: 26766634]
  21. Learn Mem. 2015 Aug 18;22(9):461-71 [PMID: 26286656]
  22. Curr Opin Neurobiol. 2002 Apr;12(2):205-10 [PMID: 12015238]
  23. Neuron. 2009 Jan 15;61(1):85-100 [PMID: 19146815]
  24. Learn Mem. 2015 Nov 16;22(12):577-83 [PMID: 26572647]
  25. Nat Rev Neurosci. 2005 Jun;6(6):463-75 [PMID: 15891777]
  26. J Neuroendocrinol. 2018 Feb;30(2): [PMID: 29194818]
  27. J Neuroendocrinol. 2020 Jan;32(1):e12811 [PMID: 31715030]
  28. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19204-7 [PMID: 16361444]
  29. J Cogn Neurosci. 2010 Jul;22(7):1362-72 [PMID: 19445601]
  30. Neurosci Biobehav Rev. 2012 Aug;36(7):1740-9 [PMID: 21771612]
  31. Science. 2019 Apr 12;364(6436): [PMID: 30975859]
  32. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16074-9 [PMID: 21911374]
  33. Sci Rep. 2017 Aug 14;7(1):8053 [PMID: 28808323]
  34. Trends Neurosci. 1999 Oct;22(10):422-6 [PMID: 10481183]
  35. Trends Cogn Sci. 2011 Jun;15(6):280-8 [PMID: 21571575]
  36. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14075-9 [PMID: 19666502]
  37. Learn Mem. 2007 May 03;14(5):359-67 [PMID: 17522027]
  38. Nat Rev Neurosci. 2009 Jun;10(6):423-33 [PMID: 19469026]
  39. Nat Neurosci. 2013 Jun;16(6):698-705 [PMID: 23624512]
  40. J Endocrinol. 2015 Aug;226(2):M13-27 [PMID: 26034071]
  41. Cell. 2007 Oct 5;131(1):160-73 [PMID: 17923095]
  42. PLoS One. 2009;4(3):e4714 [PMID: 19305644]
  43. J Psychopharmacol. 2012 Apr;26(4):516-24 [PMID: 21965192]

MeSH Term

Adrenergic beta-Agonists
Animals
Corticosterone
Dendritic Spines
Glucocorticoids
Hippocampus
Isoproterenol
Neuronal Plasticity
Neurons
Rats
Rats, Wistar
Receptors, Adrenergic, beta
Receptors, Glucocorticoid
Signal Transduction

Chemicals

Adrenergic beta-Agonists
Glucocorticoids
Receptors, Adrenergic, beta
Receptors, Glucocorticoid
Isoproterenol
Corticosterone

Word Cloud

Created with Highcharts 10.0.0corticosteronenumberspinesisoproterenolhormonesnorepinephrineglucocorticoidβ-adrenergicreceptorspinetogetherGlucocorticoidparticularlymemoryhippocampalaloneeffectadministeredeffectsactivationpotentrespectenhancingformationNotablyoccursclosesynergyarousalielevelsenhancedpresentstudyexaminedwhetherregulateprimaryneuronsreportbriefadministrationagonistincreasesbecomesprominentparallelincreasedamplitudeminiatureexcitatorypostsynapticcurrentsamplifiedco-applicationpreventedblockingantagonistRU486Takenincreaseexertadditivereceptorspermissiveregulationdendriticplasticitysynapses

Similar Articles

Cited By