Effect of Crataegus extract supplementation on diabetes induced memory deficits and serum biochemical parameters in male rats.

Amin Pirmoghani, Iraj Salehi, Shirin Moradkhani, Seyed Asaad Karimi, Sakineh Salehi
Author Information
  1. Amin Pirmoghani: Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
  2. Iraj Salehi: Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
  3. Shirin Moradkhani: Medicinal Plants and Natural Products Research Center, Department of Pharmacognosy and Pharmaceutical Biotechnology, School of pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
  4. Seyed Asaad Karimi: Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
  5. Sakineh Salehi: Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

This study was undertaken to investigate the Crataegus extract (CE) eff ;ects on diabetes-induced memory deficit in passive avoidance learning (PAL), blood glucose, and lipid profile panel. Male Wistar rats were divided into five groups: (CTRL); (DM); and with three doses of CE (100, 300 and 1000 mg/kg) (DM + CE). Streptozotocin (STZ)-induced diabetic rats (50 mg/kg, ip) were orally administrated with CE once a day for 2 weeks. After 2 weeks, PAL task was used to evaluate the passive avoidance learning and memory. At the end of experiment, the level of plasma glucose, triglycerides (TG), cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined. Our results showed that the step-through latency (STLr) in diabetic animals was less than the control group (P = 0.0009). Crataegus (300 mg) increased STLr in diabetic animals (P = 0.0418). Diabetic animals spent more time in the dark compartment (TDC) (P = 0.0009). Crataegus (300 and 1000 mg) decreased TDC in diabetic animals (P = 0.0175). Crataegus (100 and 300 mg) decreased blood glucose in diabetic animals (P < 0.001). TG and Cholesterol concentration increased in diabetic animals in comparison with control (P < 0.05). CE (100 and 300 mg) reduced the cholesterol concentration in diabetic animals (P < 0.001). There was no significant difference in the case of LDL among the experimental groups (P > 0.05). CE (1000 mg) increased HDL in diabetic animals (P < 0.05). Our findings demonstrated that CE had the hypolipidemic and hypoglycemic effects and lead to memory improvement in STZ-induced diabetes.

Keywords

References

  1. Mol Med Rep. 2016 Jun;13(6):4737-44 [PMID: 27081750]
  2. Nat Prod Res. 2004 Jun;18(3):211-3 [PMID: 15143829]
  3. Pharmacol Biochem Behav. 2015 Apr;131:98-103 [PMID: 25687375]
  4. J Neuroinflammation. 2018 Jan 16;15(1):17 [PMID: 29338747]
  5. Molecules. 2012 Dec 06;17(12):14490-509 [PMID: 23222867]
  6. Biomed Pharmacother. 2018 Jan;97:503-510 [PMID: 29091901]
  7. Anc Sci Life. 2015 Jan-Mar;34(3):156-61 [PMID: 26120230]
  8. Behav Brain Res. 2019 Feb 1;359:630-638 [PMID: 30290199]
  9. Evid Based Complement Alternat Med. 2011;2011:726723 [PMID: 21584252]
  10. J Diabetes Complications. 2019 Jan;33(1):91-97 [PMID: 29728302]
  11. J Clin Lab Anal. 2007;21(3):197-200 [PMID: 17506484]
  12. Neurochem Res. 2019 Jun;44(6):1271-1278 [PMID: 30523576]
  13. Nitric Oxide. 2018 May 1;75:27-41 [PMID: 29432804]
  14. Int J Priv Health Inf Manag. 2017 Jul-Dec;5(2):58-70 [PMID: 30271671]
  15. Nat Prod Commun. 2012 Jan;7(1):35-8 [PMID: 22428238]
  16. Physiol Rev. 2009 Jan;89(1):27-71 [PMID: 19126754]
  17. Diabetes Care. 2016 Jan;39 Suppl 1:S13-22 [PMID: 26696675]
  18. J Ethnopharmacol. 2012 Mar 27;140(2):345-67 [PMID: 22306102]
  19. Neurochem Res. 2015 Apr;40(4):811-7 [PMID: 25657067]
  20. Zhongguo Zhong Yao Za Zhi. 2010 Sep;35(18):2428-31 [PMID: 21141493]
  21. Acta Biochim Pol. 2010;57(4):553-60 [PMID: 21060897]
  22. Biomed Pharmacother. 2019 Jun;114:108795 [PMID: 30909143]
  23. Endocr Rev. 2008 Jun;29(4):494-511 [PMID: 18436709]
  24. Curr Med Chem. 2006;13(10):1203-18 [PMID: 16719780]
  25. J Nutr. 2002 Jan;132(1):5-10 [PMID: 11773500]
  26. Metab Brain Dis. 2019 Jun;34(3):833-840 [PMID: 30848472]
  27. Biomed Pharmacother. 2018 Apr;100:455-460 [PMID: 29477090]
  28. Evid Based Complement Alternat Med. 2013;2013:597067 [PMID: 23690849]
  29. Life Sci. 2003 Aug 29;73(15):1907-16 [PMID: 12899916]
  30. Exp Gerontol. 2008 Apr;43(4):339-46 [PMID: 18316167]
  31. Pharm Biol. 2010 Aug;48(8):924-31 [PMID: 20673180]
  32. World J Diabetes. 2016 Sep 15;7(17):412-22 [PMID: 27660698]
  33. Diabetologia. 1995 Sep;38(9):1096-102 [PMID: 8591825]
  34. J Pharmacol Sci. 2006 Jan;100(1):51-8 [PMID: 16404131]
  35. J Am Geriatr Soc. 2000 Oct;48(10):1285-91 [PMID: 11037017]
  36. Endocr Metab Immune Disord Drug Targets. 2019;19(5):571-579 [PMID: 30854980]
  37. J Ethnopharmacol. 2005 Oct 3;101(1-3):153-61 [PMID: 15970411]
  38. Age Ageing. 1995 Sep;24(5):421-4 [PMID: 8669347]
  39. Physiol Behav. 2014 May 10;130:40-6 [PMID: 24637062]

Word Cloud

Created with Highcharts 10.0.0diabeticanimalsCrataegusCEmemoryratsP = 0P < 0extractglucose100300 mgincreased05passiveavoidancelearningPALbloodprofileWistar3002weeksTGcholesterollipoproteinLDLHDLSTLrcontrol0009TDC1000 mgdecreased001concentrationdiabetesstudyundertakeninvestigateeffectsdiabetes-induceddeficitlipidpanelMaledividedfivegroups:CTRLDMthreedoses1000 mg/kgDM + CEStreptozotocinSTZ-induced50 mg/kgiporallyadministrateddaytaskusedevaluateendexperimentlevelplasmatriglycerideslow-densityhigh-densitydeterminedresultsshowedstep-throughlatencylessgroup0418Diabeticspenttimedarkcompartment0175CholesterolcomparisonreducedsignificantdifferencecaseamongexperimentalgroupsP > 0findingsdemonstratedhypolipidemichypoglycemiceffectsleadimprovementSTZ-inducedEffectsupplementationinduceddeficitsserumbiochemicalparametersmaleDiabetesmellitusLearningLipid

Similar Articles

Cited By