Paeoniflorin Alleviates HO-Induced Oxidative Injury Through Down-Regulation of MicroRNA-135a in HT-22 Cells.

Ailing Zhai, Zeng Zhang, Xiangjuan Kong
Author Information
  1. Ailing Zhai: Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China. ailing02al@163.com. ORCID
  2. Zeng Zhang: Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China.
  3. Xiangjuan Kong: Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China.

Abstract

Paeoniflorin (PF) has been reported to possess neuroprotective influences on cognitive dysfunction illness. In current research, we attempted to probe into the protective influences of PF against HO-induced damage and the underlying regulating mechanisms on hippocampal HT-22 cells. HT-22 cells were pretreated with PF, and then induced by HO. Afterwards, the influences of PF pretreatment were examined using CCK-8 assay, apoptosis assay, western blot and ROS assay, respectively. In addition, the expression of microRNA-135a (miR-135a) was analyzed and altered by qRT-PCR and cell transfection, respectively. After overexpression of miR-135a, the effects of miR-135a mimic on cell functions were detected again. Moreover, influences of HO, PF and miR-135a overexpression on JAK2/STAT3 and ERK1/2 signal pathways were further investigated. Further experiments verified that PF pretreatment alleviated HO-induced oxidative stress through increasing cell viability, inhibiting cell apoptosis, reducing ROS generation and activating JAK2/STAT3 and ERK1/2 pathways. Besides, expression of miR-135a was declined by PF pretreatment. Whereas, miR-135a mimic abrogated the protective effects triggered by PF pretreatment. These results indicated that PF can alleviate HO-induced oxidative stress by down-regulation of miR-135a via activation of JAK2/STAT3 and ERK1/2 pathways.

Keywords

References

  1. Exp Ther Med. 2016 Jun;11(6):2407-2412 [PMID: 27284328]
  2. Genes Cancer. 2012 Mar;3(3-4):199-208 [PMID: 23150753]
  3. Free Radic Biol Med. 2016 Aug;97:158-167 [PMID: 27242266]
  4. J Neurol Sci. 2009 May 15;280(1-2):71-8 [PMID: 19268972]
  5. Phytomedicine. 2017 Oct 15;34:115-126 [PMID: 28899493]
  6. Mol Med Rep. 2016 Jun;13(6):4593-8 [PMID: 27082639]
  7. Am J Physiol Cell Physiol. 2006 Apr;290(4):C1146-59 [PMID: 16306129]
  8. World J Gastroenterol. 2015 Jun 21;21(23):7197-207 [PMID: 26109806]
  9. J Alzheimers Dis. 2014;41(2):615-31 [PMID: 24662102]
  10. Mol Med Rep. 2018 Feb;17(2):3306-3311 [PMID: 29257281]
  11. Phytomedicine. 2014 Sep 15;21(10):1170-7 [PMID: 24916708]
  12. Mol Med Rep. 2015 Aug;12(2):2735-40 [PMID: 25954855]
  13. J Biomed Sci. 2017 Sep 19;24(1):76 [PMID: 28927401]
  14. Redox Biol. 2018 Apr;14:450-464 [PMID: 29080524]
  15. Oncol Lett. 2016 Aug;12(2):1471-1476 [PMID: 27446455]
  16. Mol Psychiatry. 2009 Feb;14(2):206-22 [PMID: 18813209]
  17. Front Cell Neurosci. 2015 Sep 30;9:381 [PMID: 26483635]
  18. J Cell Biochem. 2018 Jul;119(7):6154-6161 [PMID: 29663503]
  19. Sci Rep. 2017 Mar 03;7:43771 [PMID: 28256562]
  20. Physiol Behav. 2017 May 15;174:162-169 [PMID: 28322909]
  21. Folia Neuropathol. 2013;51(1):92 [PMID: 23553142]
  22. Int Psychogeriatr. 2002 Jun;14(2):181-5 [PMID: 12243208]
  23. Mol Med Rep. 2016 Mar;13(3):2247-52 [PMID: 26796245]
  24. Redox Biol. 2016 Oct;9:50-56 [PMID: 27372058]
  25. Zhongguo Zhong Yao Za Zhi. 2013 Feb;38(3):297-301 [PMID: 23667997]
  26. Brain Res. 2014 Oct 2;1583:55-64 [PMID: 25152461]
  27. Cell Mol Neurobiol. 2014 Mar;34(2):227-34 [PMID: 24263411]
  28. Rev Neurosci. 2014;25(4):527-42 [PMID: 24622784]
  29. Curr Opin Cell Biol. 2002 Dec;14(6):715-20 [PMID: 12473344]
  30. Oncotarget. 2014 Jul 30;5(14):5624-36 [PMID: 25015549]
  31. Nat Rev Neurosci. 2011 Feb;12(2):65-72 [PMID: 21193853]
  32. Int J Biochem Cell Biol. 2007;39(2):426-38 [PMID: 17097910]
  33. Inflammation. 2017 Dec;40(6):2042-2051 [PMID: 28791506]
  34. Biomed Environ Sci. 2018 Feb;31(2):87-96 [PMID: 29606187]
  35. Mol Med Rep. 2016 Sep;14(3):2143-9 [PMID: 27430753]
  36. Folia Neuropathol. 2014;52(3):285-90 [PMID: 25310739]
  37. Ageing Res Rev. 2019 Jan;49:125-143 [PMID: 30391753]
  38. Am J Physiol Gastrointest Liver Physiol. 2014 Jan 1;306(1):G27-36 [PMID: 24232001]

MeSH Term

Animals
Apoptosis
Cell Line
Cell Survival
Down-Regulation
Glucosides
Hydrogen Peroxide
Janus Kinase 2
Janus Kinase 3
Mice
MicroRNAs
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
Monoterpenes
Neuroprotective Agents
Oxidative Stress
Reactive Oxygen Species
Signal Transduction

Chemicals

Glucosides
MicroRNAs
Mirn135 microRNA, mouse
Monoterpenes
Neuroprotective Agents
Reactive Oxygen Species
peoniflorin
Hydrogen Peroxide
Jak2 protein, mouse
Jak3 protein, mouse
Janus Kinase 2
Janus Kinase 3
Mapk1 protein, mouse
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3

Word Cloud

Created with Highcharts 10.0.0PFmiR-135ainfluencespretreatmentJAK2/STAT3ERK1/2pathwaysPaeoniflorinHO-inducedHT-22assayapoptosiscellprotectivecellsHOrespectivelyexpressionoverexpressioneffectsmimicoxidativestressROSreportedpossessneuroprotectivecognitivedysfunctionillnesscurrentresearchattemptedprobedamageunderlyingregulatingmechanisms onhippocampalpretreatedinducedAfterwardsexaminedusingCCK-8westernblotand ROSadditionmicroRNA-135aanalyzed andalteredqRT-PCR and celltransfectionfunctionsdetectedMoreoverPF andsignalinvestigatedexperimentsverifiedalleviatedincreasingviabilityinhibitingreducinggenerationactivatingBesidesdeclinedWhereasabrogatedtriggeredresultsindicatedcanalleviatedown-regulationviaactivationAlleviatesHO-InducedOxidativeInjuryDown-RegulationMicroRNA-135aCellsAlzheimerdiseaseCellpathway

Similar Articles

Cited By