Ligustrazine suppresses renal NMDAR1 and caspase-3 expressions in a mouse model of sepsis-associated acute kidney injury.

Jing Ying, Jin Wu, Yiwei Zhang, Yangyang Han, Xinger Qian, Qiuhong Yang, Yongjie Chen, Yijun Chen, Hao Zhu
Author Information
  1. Jing Ying: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
  2. Jin Wu: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China. sciwujin@126.com.
  3. Yiwei Zhang: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
  4. Yangyang Han: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
  5. Xinger Qian: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
  6. Qiuhong Yang: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
  7. Yongjie Chen: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
  8. Yijun Chen: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
  9. Hao Zhu: Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.

Abstract

Sepsis-associated acute kidney injury (AKI) is a life threatening condition with high morbidity and mortality. The pathogenesis of AKI is associated with apoptosis. In this study, we investigated the effects of ligustrazine (LGZ) on experimental sepsis-associated AKI in mice. Sepsis-associated AKI was induced in a mice model using cecal ligation and puncture (CLP) method. Mice were administered LGZ (10, 30, and 60 mg/kg) via tail vein injection 0.5 h before CLP surgery. Mice survival was evaluated. Renal water content was detected. Urine samples were collected for ELISA of Kim1. Kidneys were collected for nucleic acid analysis and histological examination. Pathological assessment was used to determine the effect of LGZ on sepsis-associated AKI. Caspase-3 expression in kidney was assessed by immunohistochemistry. Renal NMDAR1 level was also determined. Treatment of LGZ improved mice survival rate; the effect was significant when administered at a high LGZ dose (60 mg/kg). Renal water content of mice undergoing CLP was significantly reduced by LGZ treatment. Both middle-dose and high-dose LGZ treatments reduced urine Kim1 level in sepsis-associated AKI mice. The severity of AKI in septic mice was reduced by middle-dose and high-dose LGZ administration. Immunohistochemical analysis revealed decreased caspase-3 and NMDAR1 levels in the kidney following middle-dose and high-dose LGZ treatments. RT-PCR assay showed a significant reduction in NMDAR1 mRNA expression in the kidney of middle-dose and high-dose LGZ-treated mice. LGZ exhibited protective effects against sepsis-associated AKI in mice, possibly via downregulation of renal NMDAR1 expression and its anti-apoptotic action by inhibiting caspase-3.

Keywords

References

  1. Am J Transl Res. 2017 Nov 15;9(11):4807-4820 [PMID: 29218081]
  2. Environ Health. 2011 Sep 05;10:77 [PMID: 21888673]
  3. Clin Infect Dis. 2001 Mar 1;32(5):686-93 [PMID: 11229835]
  4. Annu Rev Biochem. 1999;68:383-424 [PMID: 10872455]
  5. Science. 1984 Nov 16;226(4676):850-2 [PMID: 6093256]
  6. Science. 1998 Aug 28;281(5381):1312-6 [PMID: 9721091]
  7. Planta Med. 2006 Aug;72(10):888-93 [PMID: 16902863]
  8. Microsurgery. 2002;22(8):343-6 [PMID: 12497570]
  9. Chin J Integr Med. 2012 Aug;18(8):610-5 [PMID: 22855036]
  10. Science. 1999 Apr 9;284(5412):339-43 [PMID: 10195903]
  11. Food Chem Toxicol. 2014 Jan;63:62-8 [PMID: 24200859]
  12. Environ Toxicol Pharmacol. 2008 Jul;26(1):49-55 [PMID: 21783887]
  13. Intensive Care Med. 2009 May;35(5):871-81 [PMID: 19066848]
  14. BMJ. 2019 Jan 9;364:k4891 [PMID: 30626586]
  15. Ren Fail. 2013;35(2):291-4 [PMID: 23181751]
  16. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7162-6 [PMID: 7638161]
  17. Med Sci Monit. 2017 Nov 06;23:5277-5282 [PMID: 29104282]
  18. FASEB J. 2003 May;17(8):872-4 [PMID: 12670883]
  19. Nephrol Dial Transplant. 2007 Mar;22(3):732-9 [PMID: 17132701]
  20. Inflammation. 2012 Feb;35(1):150-7 [PMID: 21302135]
  21. Kidney Int. 2011 Jul;80(1):29-40 [PMID: 21562469]
  22. Kidney Int. 2007 Oct;72(8):985-93 [PMID: 17687258]
  23. Molecules. 2018 Aug 30;23(9):null [PMID: 30200208]
  24. J Pathol. 2007 Jun;212(2):209-17 [PMID: 17471468]
  25. Burns. 2012 Feb;38(1):102-7 [PMID: 22079542]
  26. EMBO J. 2016 Sep 1;35(17):1923-34 [PMID: 27458189]
  27. Nat Biotechnol. 2010 May;28(5):455-62 [PMID: 20458315]
  28. Am J Chin Med. 2012;40(1):25-37 [PMID: 22298446]
  29. N Engl J Med. 2018 Oct 11;379(15):1431-1442 [PMID: 30304656]
  30. Kidney Int. 2008 Jun;73(11):1266-74 [PMID: 18354376]
  31. Cell Death Differ. 1999 Feb;6(2):99-104 [PMID: 10200555]
  32. Cell. 2010 Jan 22;140(2):222-34 [PMID: 20141836]
  33. Crit Care Med. 2012 Nov;40(11):2997-3006 [PMID: 22878677]
  34. J Surg Res. 2013 Nov;185(1):286-93 [PMID: 23830368]
  35. Neuroscientist. 2018 Apr;24(2):130-141 [PMID: 28580823]
  36. World J Gastroenterol. 2003 Jul;9(7):1563-6 [PMID: 12854164]
  37. Mol Cell Biochem. 2014 Aug;393(1-2):123-31 [PMID: 24740757]
  38. J Am Soc Nephrol. 2018 Jul;29(7):1900-1916 [PMID: 29925521]
  39. Chin Med J (Engl). 2010 Nov;123(22):3206-11 [PMID: 21163116]
  40. Ren Fail. 2016 Oct;38(9):1462-1467 [PMID: 27484883]
  41. Transplant Proc. 2004 Sep;36(7):1949-51 [PMID: 15518708]
  42. J Surg Res. 2011 Apr;166(2):298-305 [PMID: 19592024]
  43. Nephrol Dial Transplant. 2009 Mar;24(3):769-77 [PMID: 18842672]
  44. BMC Syst Biol. 2013 Oct 30;7:110 [PMID: 24172336]
  45. Nephron Physiol. 2004;98(3):p80-8 [PMID: 15528953]
  46. J Surg Res. 2013 Aug;183(2):668-77 [PMID: 23498342]
  47. JAMA. 1996 May 15;275(19):1489-94 [PMID: 8622223]
  48. Cell. 1996 Oct 18;87(2):171 [PMID: 8861900]
  49. J Cell Mol Med. 2002 Oct-Dec;6(4):653-60 [PMID: 12611650]
  50. Mol Med Rep. 2017 Dec;16(6):8359-8364 [PMID: 28990059]
  51. Zhonghua Shen Jing Jing Shen Ke Za Zhi. 1989 Jun;22(3):148-51, 191 [PMID: 2591268]

Grants

  1. 2017A610192/Ningbo Natural Science Foundation

MeSH Term

Acute Kidney Injury
Animals
Caspase 3
Disease Models, Animal
Gene Expression Regulation
Male
Mice
Pyrazines
Receptors, N-Methyl-D-Aspartate
Sepsis

Chemicals

NMDA receptor A1
Pyrazines
Receptors, N-Methyl-D-Aspartate
Casp3 protein, mouse
Caspase 3
tetramethylpyrazine

Word Cloud

Created with Highcharts 10.0.0LGZAKImicekidneyNMDAR1sepsis-associatedmiddle-dosehigh-doseinjuryCLPRenalexpressionreducedcaspase-3Sepsis-associatedacutehigheffectsmodelMiceadministered60 mg/kgviasurvivalwatercontentcollectedKim1analysiseffectCaspase-3levelsignificanttreatmentsrenalLigustrazinelifethreateningconditionmorbiditymortalitypathogenesisassociatedapoptosisstudyinvestigatedligustrazineexperimentalinducedusingcecalligationpuncturemethod1030tailveininjection05 hsurgeryevaluateddetectedUrinesamplesELISAKidneysnucleicacidhistologicalexaminationPathologicalassessmentuseddetermineassessedimmunohistochemistryalsodeterminedTreatmentimprovedratedoseundergoingsignificantlytreatmenturineseveritysepticadministrationImmunohistochemicalrevealeddecreasedlevelsfollowingRT-PCRassayshowedreductionmRNALGZ-treatedexhibitedprotectivepossiblydownregulationanti-apoptoticactioninhibitingsuppressesexpressionsmouseAcuteApoptosisSepsis

Similar Articles

Cited By