Decoding Task-Related Functional Brain Imaging Data to Identify Developmental Disorders: The Case of Congenital Amusia.

Philippe Albouy, Anne Caclin, Sam V Norman-Haignere, Yohana Lévêque, Isabelle Peretz, Barbara Tillmann, Robert J Zatorre
Author Information
  1. Philippe Albouy: Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
  2. Anne Caclin: INSERM, U1028, CNRS, UMR 5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon, France.
  3. Sam V Norman-Haignere: Zuckerman Institute of Mind, Brain and Behavior, Columbia University, New York, NY, United States.
  4. Yohana Lévêque: University Lyon 1, Lyon, France.
  5. Isabelle Peretz: International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada.
  6. Barbara Tillmann: University Lyon 1, Lyon, France.
  7. Robert J Zatorre: Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

Abstract

Machine learning classification techniques are frequently applied to structural and resting-state fMRI data to identify brain-based biomarkers for developmental disorders. However, task-related fMRI has rarely been used as a diagnostic tool. Here, we used structural MRI, resting-state connectivity and task-based fMRI data to detect congenital amusia, a pitch-specific developmental disorder. All approaches discriminated amusics from controls in meaningful brain networks at similar levels of accuracy. Interestingly, the classifier outcome was specific to deficit-related neural circuits, as the group classification failed for fMRI data acquired during a verbal task for which amusics were unimpaired. Most importantly, classifier outputs of task-related fMRI data predicted individual behavioral performance on an independent pitch-based task, while this relationship was not observed for structural or resting-state data. These results suggest that task-related imaging data can potentially be used as a powerful diagnostic tool to identify developmental disorders as they allow for the prediction of symptom severity.

Keywords

References

  1. Brain Cogn. 2009 Dec;71(3):259-64 [PMID: 19762140]
  2. Hum Brain Mapp. 2019 Feb 15;40(3):855-867 [PMID: 30381866]
  3. Ann N Y Acad Sci. 2018 May 9;:null [PMID: 29744897]
  4. Brain. 2006 Oct;129(Pt 10):2562-70 [PMID: 16931534]
  5. J Neurosci. 2016 Mar 9;36(10):2986-94 [PMID: 26961952]
  6. Brain Res. 2013 Nov 6;1537:224-32 [PMID: 24041778]
  7. Cereb Cortex. 2015 Jul;25(7):1947-57 [PMID: 24488957]
  8. Transl Psychiatry. 2017 Aug 22;7(8):e1218 [PMID: 28892073]
  9. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 [PMID: 16537458]
  10. Neuroimage. 2018 Oct 15;180(Pt A):68-77 [PMID: 28655633]
  11. Memory. 2010 Aug;18(6):657-69 [PMID: 20706954]
  12. Trends Cogn Sci. 2016 Nov;20(11):857-867 [PMID: 27692992]
  13. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:978-81 [PMID: 25570124]
  14. Ann N Y Acad Sci. 2003 Nov;999:58-75 [PMID: 14681118]
  15. Brain Res. 2016 Jun 1;1640(Pt B):251-63 [PMID: 26505915]
  16. J Neurosci. 2007 Nov 21;27(47):13028-32 [PMID: 18032676]
  17. J Neurosci. 2009 Aug 19;29(33):10215-20 [PMID: 19692596]
  18. Neuroimage. 2014 Apr 15;90:179-88 [PMID: 24418502]
  19. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 [PMID: 11209064]
  20. J Neurophysiol. 2016 Jul 1;116(1):88-97 [PMID: 27009161]
  21. Prog Neuropsychopharmacol Biol Psychiatry. 2019 Apr 20;91:49-59 [PMID: 30107192]
  22. Front Neurosci. 2017 Jan 19;11:1 [PMID: 28154520]
  23. Neuroimage. 1999 Oct;10(4):417-29 [PMID: 10493900]
  24. Elife. 2017 Jan 24;6: [PMID: 28115055]
  25. Front Neurosci. 2016 Jul 15;10:324 [PMID: 27471442]
  26. Front Hum Neurosci. 2009 Oct 23;3:32 [PMID: 19893761]
  27. Cereb Cortex. 2011 Feb;21(2):292-9 [PMID: 20494966]
  28. Front Neuroinform. 2015 Jan 06;8:88 [PMID: 25610393]
  29. Neuroimage. 2016 Apr 1;129:401-413 [PMID: 26827809]
  30. Brain. 2013 May;136(Pt 5):1639-61 [PMID: 23616587]
  31. Front Hum Neurosci. 2015 Feb 04;9:20 [PMID: 25698955]
  32. Neuroimage. 2005 Jul 1;26(3):839-51 [PMID: 15955494]
  33. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 [PMID: 12506194]
  34. J Neurosci. 2013 Dec 11;33(50):19451-69 [PMID: 24336712]
  35. J Magn Reson Imaging. 2006 Jun;23(6):827-39 [PMID: 16649196]
  36. Neuroimage. 2017 Jan 15;145(Pt B):137-165 [PMID: 27012503]

Word Cloud

Created with Highcharts 10.0.0fMRIdatastructuralresting-statedevelopmentaltask-relateduseddiagnosticclassificationidentifybrain-basedbiomarkersdisorderstooltask-basedamusicsclassifiertaskMachinelearningtechniquesfrequentlyappliedHoweverrarelyMRIconnectivitydetectcongenitalamusiapitch-specificdisorderapproachesdiscriminatedcontrolsmeaningfulbrainnetworkssimilarlevelsaccuracyInterestinglyoutcomespecificdeficit-relatedneuralcircuitsgroupfailedacquiredverbalunimpairedimportantlyoutputspredictedindividualbehavioralperformanceindependentpitch-basedrelationshipobservedresultssuggestimagingcanpotentiallypowerfulallowpredictionsymptomseverityDecodingTask-RelatedFunctionalBrainImagingDataIdentifyDevelopmentalDisorders:CaseCongenitalAmusiamultivariatepatternanalysisMVPArs-fMRIsMRItonedeafness

Similar Articles

Cited By (8)