A New Look at the Structures of Old Sepsis Actors by Exploratory Data Analysis Tools.

Antonio Gnoni, Emanuele De Nitto, Salvatore Scacco, Luigi Santacroce, Luigi Leonardo Palese
Author Information
  1. Antonio Gnoni: SMBNOS-Università degli Studi di Bari, 70124 Bari, Italy. ORCID
  2. Emanuele De Nitto: SMBNOS-Università degli Studi di Bari, 70124 Bari, Italy. ORCID
  3. Salvatore Scacco: SMBNOS-Università degli Studi di Bari, 70124 Bari, Italy. ORCID
  4. Luigi Santacroce: Ionian Department, Microbiology and Virology Lab Unit, University Hospital of Bari, Università degli Studi di Bari, 70124 Bari, Italy. ORCID
  5. Luigi Leonardo Palese: SMBNOS-Università degli Studi di Bari, 70124 Bari, Italy. ORCID

Abstract

sepsis is a life-threatening condition that accounts for numerous deaths worldwide, usually complications of common community infections (i.e., pneumonia, etc), or infections acquired during the hospital stay. sepsis and septic shock, its most severe evolution, involve the whole organism, recruiting and producing a lot of molecules, mostly proteins. Proteins are dynamic entities, and a large number of techniques and studies have been devoted to elucidating the relationship between the conformations adopted by proteins and what is their function. Although molecular dynamics has a key role in understanding these relationships, the number of protein structures available in the databases is so high that it is currently possible to build data sets obtained from experimentally determined structures. Techniques for dimensionality reduction and clustering can be applied in exploratory data analysis in order to obtain information on the function of these molecules, and this may be very useful in immunology to better understand the structure-activity relationship of the numerous proteins involved in host defense, moreover in septic patients. The large number of degrees of freedom that characterize the biomolecules requires special techniques which are able to analyze this kind of data sets (with a small number of entries respect to the number of degrees of freedom). In this work we analyzed the ability of two different types of algorithms to provide information on the structures present in three data sets built using the experimental structures of allosteric proteins involved in sepsis. The results obtained by means of a principal component analysis algorithm and those obtained by a random projection algorithm are largely comparable, proving the effectiveness of random projection methods in structural bioinformatics. The usefulness of random projection in exploratory data analysis is discussed, including validation of the obtained clusters. We have chosen these proteins because of their involvement in sepsis and septic shock, aimed to highlight the potentiality of bioinformatics to point out new diagnostic and prognostic tools for the patients.

Keywords

References

  1. Inflammation. 2018 Oct;41(5):1569-1581 [PMID: 29956069]
  2. Ann Intensive Care. 2013 Feb 15;3(1):4 [PMID: 23414610]
  3. Comput Biol Chem. 2018 Apr;73:57-64 [PMID: 29428276]
  4. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  5. Ann Intensive Care. 2019 Jun 10;9(1):67 [PMID: 31183575]
  6. Biophys J. 2015 Sep 15;109(6):1077-9 [PMID: 26190636]
  7. J Mol Biol. 1979 Apr 5;129(2):175-220 [PMID: 39173]
  8. Nat Biotechnol. 2008 Mar;26(3):303-4 [PMID: 18327243]
  9. Biophys Chem. 2010 May;148(1-3):16-22 [PMID: 20346571]
  10. J Biol Regul Homeost Agents. 2018 Sep-Oct;32(5):1323-1328 [PMID: 30334433]
  11. Trends Pharmacol Sci. 2005 Jan;26(1):10-4 [PMID: 15629199]
  12. Chem Rev. 2015 Feb 25;115(4):1702-24 [PMID: 25607981]
  13. Proteins. 2011 Oct;79(10):2861-70 [PMID: 21905111]
  14. J Mol Biol. 1999 Oct 8;292(5):1121-36 [PMID: 10512707]
  15. Recenti Prog Med. 2006 Jul-Aug;97(7-8):411-6 [PMID: 16913180]
  16. Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12366-71 [PMID: 26392530]
  17. Nat Struct Biol. 2003 Dec;10(12):980 [PMID: 14634627]
  18. Biochemistry. 1996 Jun 11;35(23):7330-40 [PMID: 8652509]
  19. Mol Aspects Med. 2012 Jun;33(3):209-90 [PMID: 22230555]
  20. Biochemistry. 2004 Oct 5;43(39):12477-88 [PMID: 15449937]
  21. Chem Rev. 2011 Oct 12;111(10):5821-65 [PMID: 21942677]
  22. J Transl Med. 2019 Jan 11;17(1):20 [PMID: 30634982]
  23. Antiinflamm Antiallergy Agents Med Chem. 2012;11(2):121-50 [PMID: 23013331]
  24. Nature. 1960 Feb 13;185(4711):416-22 [PMID: 18990801]
  25. Acta Crystallogr B. 1990 Jun 1;46 ( Pt 3):409-18 [PMID: 2383372]
  26. J Biol Chem. 2001 Oct 5;276(40):37547-55 [PMID: 11477109]
  27. Br J Anaesth. 2000 Oct;85(4):599-610 [PMID: 11064620]
  28. Data Brief. 2017 Oct 06;15:696-700 [PMID: 29124093]
  29. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  30. Nature. 1995 May 4;375(6526):84-7 [PMID: 7723849]
  31. Science. 2000 Sep 15;289(5486):1933-7 [PMID: 10988074]
  32. Biophys Chem. 2015 Jan;196:1-9 [PMID: 25237718]
  33. J Biol Chem. 2011 May 27;286(21):19035-46 [PMID: 21467029]
  34. Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt A):1416-1422 [PMID: 28846854]
  35. Annu Rev Biochem. 2000;69:145-82 [PMID: 10966456]
  36. Phys Chem Chem Phys. 2019 Feb 27;21(9):4822-4830 [PMID: 30775748]
  37. J Phys Chem B. 2015 Dec 24;119(51):15568-73 [PMID: 26619349]
  38. Life Sci. 2012 Sep 17;91(7-8):237-43 [PMID: 22820545]
  39. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:129-52 [PMID: 12432914]
  40. Int J Mol Sci. 2017 Sep 08;18(9):null [PMID: 28885563]
  41. Trends Immunol. 2013 Mar;34(3):129-36 [PMID: 23036432]
  42. Eur Biophys J. 1984;11(2):103-9 [PMID: 6544679]
  43. Biochim Biophys Acta. 2013 Dec;1834(12):2486-93 [PMID: 24016775]
  44. J Biol Chem. 2004 Oct 8;279(41):42929-35 [PMID: 15292194]
  45. Biochemistry. 2005 Apr 26;44(16):6101-21 [PMID: 15835899]
  46. Inflammation. 2015 Feb;38(1):394-9 [PMID: 25338941]
  47. Nature. 1970 Nov 21;228(5273):726-39 [PMID: 5528785]
  48. Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281 [PMID: 27794042]
  49. J Phys Chem B. 2016 Nov 10;120(44):11428-11435 [PMID: 27754673]
  50. J Mol Biol. 1965 May;12:88-118 [PMID: 14343300]
  51. J Lipid Res. 2012 Jul;53(7):1336-47 [PMID: 22547204]
  52. J Biol Chem. 2001 Mar 30;276(13):10358-65 [PMID: 11121413]

Grants

  1. FFABR 2017/Italian Ministry of University and Research - MIUR

Word Cloud

Created with Highcharts 10.0.0proteinsnumberdataSepsisstructuresobtainedrandomprojectionsepticsetsanalysisbioinformaticsnumerousinfectionsshockmoleculeslargetechniquesrelationshipfunctionexploratoryinformationinvolvedpatientsdegreesfreedomallostericsepsisalgorithmtoolslife-threateningconditionaccountsdeathsworldwideusuallycomplicationscommoncommunityiepneumoniaetcacquiredhospitalstaysevereevolutioninvolvewholeorganismrecruitingproducinglotmostlyProteinsdynamicentitiesstudiesdevotedelucidatingconformationsadoptedAlthoughmoleculardynamicskeyroleunderstandingrelationshipsproteinavailabledatabaseshighcurrentlypossiblebuildexperimentallydeterminedTechniquesdimensionalityreductionclusteringcanappliedorderobtainmayusefulimmunologybetterunderstandstructure-activityhostdefensemoreovercharacterizebiomoleculesrequiresspecialableanalyzekindsmallentriesrespectworkanalyzedabilitytwodifferenttypesalgorithmsprovidepresentthreebuiltusingexperimentalresultsmeansprincipalcomponentlargelycomparableprovingeffectivenessmethodsstructuralusefulnessdiscussedincludingvalidationclusterschoseninvolvementaimedhighlightpotentialitypointnewdiagnosticprognosticNewLookStructuresOldActorsExploratoryDataAnalysisToolsPCAalbuminclinicalchemistrycyclooxygenasehemoglobinpathophisiology

Similar Articles

Cited By (5)