Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for MRSA β-lactam resistance.

Mélanie Roch, Emmanuelle Lelong, Olesya O Panasenko, Roberto Sierra, Adriana Renzoni, William L Kelley
Author Information
  1. Mélanie Roch: 1Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland.
  2. Emmanuelle Lelong: 2Service of Infectious Diseases and Department of Medical Specialties, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, Geneva, CH-1206 Switzerland.
  3. Olesya O Panasenko: 1Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland.
  4. Roberto Sierra: 1Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland.
  5. Adriana Renzoni: 2Service of Infectious Diseases and Department of Medical Specialties, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, Geneva, CH-1206 Switzerland.
  6. William L Kelley: 1Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland. ORCID

Abstract

is a major human pathogen and represents a clinical challenge because of widespread antibiotic resistance. Methicillin resistant (MRSA) is particularly problematic and originates by the horizontal acquisition of encoding PBP2a, an extracellular membrane anchored transpeptidase, which confers resistance to β-lactam antibiotics by allosteric gating of its active site channel. Herein, we show that dual disruption of PrsA, a lipoprotein chaperone displaying anti-aggregation activity, together with HtrA1, a membrane anchored chaperone/serine protease, resulted in severe and synergistic attenuation of PBP2a folding that restores sensitivity to β-lactams such as oxacillin. Purified PBP2a has a pronounced unfolding transition initiating at physiological temperatures that leads to irreversible precipitation and complete loss of activity. The concordance of genetic and biochemical data highlights the necessity for extracellular protein folding factors governing MRSA β-lactam resistance. Targeting the PBP2a folding pathway represents a particularly attractive adjuvant strategy to combat antibiotic resistance.

Keywords

References

  1. Mol Microbiol. 2010 Jul 1;77(1):108-27 [PMID: 20487272]
  2. ACS Chem Biol. 2018 Mar 16;13(3):694-702 [PMID: 29357220]
  3. J Bacteriol. 1976 Jun;126(3):1224-31 [PMID: 7546]
  4. J Am Chem Soc. 2015 May 27;137(20):6500-5 [PMID: 25964995]
  5. Microb Cell Fact. 2015 Jul 16;14:104 [PMID: 26178240]
  6. Mol Microbiol. 2003 Aug;49(3):807-21 [PMID: 12864861]
  7. Cell. 2017 Nov 30;171(6):1354-1367.e20 [PMID: 29103614]
  8. Cell. 2007 Nov 2;131(3):572-83 [PMID: 17981123]
  9. Biochem J. 1998 Jun 15;332 ( Pt 3):755-61 [PMID: 9620879]
  10. Appl Environ Microbiol. 2004 Oct;70(10):6076-85 [PMID: 15466553]
  11. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  12. Curr Med Chem. 2015;22(14):1678-86 [PMID: 25760091]
  13. Science. 2014 May 9;344(6184):590-1 [PMID: 24812390]
  14. Cell Mol Life Sci. 2013 Mar;70(5):761-75 [PMID: 22806565]
  15. J Bacteriol. 2010 Nov;192(22):6077-85 [PMID: 20870770]
  16. Sci Rep. 2017 Jan 27;7:41341 [PMID: 28128357]
  17. Front Microbiol. 2017 Mar 28;8:531 [PMID: 28400767]
  18. Microbiology. 2003 Oct;149(Pt 10):2719-32 [PMID: 14523105]
  19. Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16808-13 [PMID: 24085846]
  20. Antimicrob Agents Chemother. 2015 Apr;59(4):1922-30 [PMID: 25583724]
  21. Antimicrob Agents Chemother. 2015 Dec 28;60(3):1656-66 [PMID: 26711778]
  22. IUBMB Life. 2014 Aug;66(8):572-7 [PMID: 25044998]
  23. Appl Environ Microbiol. 2014 Feb;80(4):1463-8 [PMID: 24362423]
  24. Trends Microbiol. 2019 Jan;27(1):26-38 [PMID: 30031590]
  25. Drug Resist Updat. 2017 Mar;31:1-14 [PMID: 28867240]
  26. EMBO Rep. 2004 Feb;5(2):195-200 [PMID: 14726952]
  27. Science. 2014 May 9;344(6184):1250494 [PMID: 24812405]
  28. Nat Commun. 2017 Dec 8;8(1):1992 [PMID: 29222465]
  29. J Biol Chem. 2015 Feb 6;290(6):3278-92 [PMID: 25525259]
  30. FEMS Microbiol Lett. 1997 Jun 1;151(1):1-8 [PMID: 9198277]
  31. Antimicrob Agents Chemother. 2012 Jul;56(7):3629-40 [PMID: 22526301]
  32. Curr Opin Microbiol. 2010 Oct;13(5):551-7 [PMID: 20888287]
  33. N Engl J Med. 1998 Aug 20;339(8):520-32 [PMID: 9709046]
  34. FEMS Microbiol Rev. 2008 Mar;32(2):234-58 [PMID: 18266856]
  35. Nat Protoc. 2007;2(9):2212-21 [PMID: 17853878]
  36. Nat Rev Microbiol. 2009 Sep;7(9):629-41 [PMID: 19680247]
  37. Nat Struct Mol Biol. 2010 Jul;17(7):844-52 [PMID: 20581825]
  38. Science. 2016 Jul 1;353(6294):aac4354 [PMID: 27365453]
  39. J Bacteriol. 2016 Sep 09;198(19):2719-31 [PMID: 27432833]
  40. Clin Infect Dis. 2008 Jun 1;46 Suppl 5:S350-9 [PMID: 18462090]
  41. Nat Struct Biol. 2002 Nov;9(11):870-6 [PMID: 12389036]
  42. MBio. 2015 May 26;6(3):e00308-15 [PMID: 26015493]
  43. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7687-92 [PMID: 12032344]
  44. Biochim Biophys Acta. 2004 Nov 11;1694(1-3):311-27 [PMID: 15546674]
  45. Trends Microbiol. 1994 Oct;2(10):372-80 [PMID: 7850204]
  46. PLoS One. 2013 Sep 30;8(9):e77122 [PMID: 24098817]
  47. Antimicrob Agents Chemother. 2013 Jan;57(1):83-95 [PMID: 23070169]
  48. Nat Rev Drug Discov. 2015 Aug;14(8):529-42 [PMID: 26139286]
  49. Microbiol Spectr. 2019 Mar;7(2): [PMID: 30900543]
  50. J Bacteriol. 2012 May;194(10):2677-86 [PMID: 22447899]
  51. Antimicrob Agents Chemother. 2011 Mar;55(3):1008-20 [PMID: 21173175]
  52. Biochem J. 1979 Nov 15;184(2):441-9 [PMID: 43145]
  53. J Am Chem Soc. 2017 Feb 8;139(5):2102-2110 [PMID: 28099001]
  54. Infect Immun. 2016 Sep 19;84(10):3034-46 [PMID: 27481256]
  55. J Am Chem Soc. 2015 Feb 11;137(5):1738-41 [PMID: 25629446]
  56. Electrophoresis. 2001 Mar;22(5):960-5 [PMID: 11332764]

MeSH Term

Anti-Bacterial Agents
Bacterial Proteins
High-Temperature Requirement A Serine Peptidase 1
Humans
Lipoproteins
Membrane Proteins
Methicillin-Resistant Staphylococcus aureus
Microbial Sensitivity Tests
Models, Molecular
Penicillin-Binding Proteins
Protein Conformation
Staphylococcal Infections
Structure-Activity Relationship
beta-Lactam Resistance

Chemicals

Anti-Bacterial Agents
Bacterial Proteins
Lipoproteins
Membrane Proteins
Penicillin-Binding Proteins
mecA protein, Staphylococcus aureus
prsA protein, bacteria
High-Temperature Requirement A Serine Peptidase 1

Word Cloud

Created with Highcharts 10.0.0resistancePBP2afoldingMRSAextracellularβ-lactamrepresentsantibioticparticularlymembraneanchoredPrsAactivityHtrA1factorsmajorhumanpathogenclinicalchallengewidespreadMethicillinresistantproblematicoriginateshorizontalacquisitionencodingtranspeptidaseconfersantibioticsallostericgatingactivesitechannelHereinshowdualdisruptionlipoproteinchaperonedisplayinganti-aggregationtogetherchaperone/serineproteaseresultedseveresynergisticattenuationrestoressensitivityβ-lactamsoxacillinPurifiedpronouncedunfoldingtransitioninitiatingphysiologicaltemperaturesleadsirreversibleprecipitationcompletelossconcordancegeneticbiochemicaldatahighlightsnecessityproteingoverningTargetingpathwayattractiveadjuvantstrategycombatThermosensitiverequiresBacterialgenesChaperones

Similar Articles

Cited By